Kniga-Online.club
» » » » Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Читать бесплатно Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi. Жанр: Программирование издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Листинг 3.18. Класс TtdStack

TtdStack = class private

FCount : longint;

FDispose : TtdDisposeProc;

FHead : PslNode;

FName : TtdNameString;

protected

procedure sError(aErrorCode : integer;

const aMethodName : TtdNameString);

class procedure sGetNodeManager;

public

constructor Create(aDispose : TtdDisposeProc);

destructor Destroy; override;

procedure Clear;

function Examine : pointer;

function IsEmpty : boolean;

function Pop : pointer;

procedure Push(aItem : pointer);

property Count : longint read FCount;

property Name : TtdNameString read FName write FName;

end;

Метод Examine возвращает первый элемент стека, не выталкивая его из стека. Он бывает очень удобным в использовании, поскольку не требует выталкивания элемента с последующим заталкиванием. Метод IsEmpty возвращает значение true, если стек пуст, что эквивалентно проверке равенства нулю свойства Count.

Листинг 3.19. Методы Examine и Is Empty для класса TtdStack

function TtdStack.Examine : pointer;

begin

if (Count = 0) then

sError(tdeStackIsEmpty, 'Examine');

Result := FHead^.slnNext^.slnData;

end;

function TtdStack.IsEmpty : boolean;

begin

Result := (Count = 0);

end;

Конструктор Create работает аналогично конструктору класса односвязного списка. Он проверяет, существует ли диспетчер узлов, а затем с помощью диспетчера распределяет фиктивный начальный узел, который, естественно, ни на что не указывает. Деструктор Destroy очищает стек и освобождает фиктивный начальный узел, FHead, возвращая его диспетчеру узлов.

Листинг 3.20. Конструктор и деструктор класса TtdStack

constructor TtdStack.Create(aDispose : TtdDisposeProc);

begin

inherited Create;

{сохранить процедуру удаления}

FDispose := aDispose;

{получить диспетчер узлов}

sGetNodeManager;

{распределить начальный узел}

FHead := PslNode (SLNodeManager.AllocNode);

FHead^.slnNext := nil;

FHead^.slnData := nil;

end;

destructor TtdStack.Destroy;

begin

{удалить все оставшиеся узлы; очистить начальный фиктивный узел}

if (Count <> 0) then

Clear;

SLNodeManager.FreeNode(FHead);

inherited Destroy;

end;

Заталкивание элемента в стек и выталкивание его из стека представляют собой короткие процедуры. Push распределяет новый узел при помощи диспетчера узлов и вставляет его после фиктивного начального узла. Метод Pop перед удалением связей узла с фиктивным узлом с помощью алгоритма "удалить после" проверяет, существует ли в стеке хотя бы один узел. Затем он возвращает элемент и освобождает узел, возвращая его диспетчеру узлов.

Листинг 3.21. Методы Push и Pop класса TtdStack

procedure TtdStack.Push(aItem : pointer);

var

Temp : PslNode;

begin

{распределить новый узел и поместить его в начало стека}

Temp := PslNode(SLNodeManager.AllocNode);

Temp^.slnData := aItem;

Temp^.slnNext := FHead^.slnNext;

FHead^.slnNext := Temp;

inc(FCount);

end;

function TtdStack.Pop : pointer;

var

Temp : PslNode;

begin

if (Count = 0) then

sError(tdeStackIsEmpty, 'Pop');

{обратите внимание, что даже если это возможно, мы не удаляем данные узла; этот метод должен возвращать данные}

Temp := FHead^.slnNext;

Result := Temp^.slnData;

FHead^.slnNext := Temp^.slnNext;

SLNodeManager.FreeNode(Temp);

dec(FCount);

end;

Полный код класса TtdStack можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDStkQue.pas.

Стеки на основе массивов

После написания класса стека, основанного на связном списке, давайте перейдем к исследованию стеков, реализованных на базе массивов. Причина для организации такого класса заключается в том, что во многих случаях реализация стека на одном из простых типов (например, char или double) гораздо проще в случае применения массивов.

Ради простоты, в качестве базового массива возьмем класс TList. Другими словами, мы создадим класс стека указателей. В предыдущей версии стека операция Push вставляла узел в начало списка, а операция Pop выбирала узел из начала списка. Это не самый эффективный метод работы с массивами. Вставка в начало списка принадлежит к классу операций О(n), а нам желательно разработать операцию класса O(1), как в ситуации со связными списками, Поэтому при заталкивании и выталкивании элемента мы будем вставлять и удалять элемент в конце списка.

Рисунок 3.8.

Использование массива для организации стека

Рассмотрим интерфейс класса TtdArrayStack. Как видите, его раздел public полностью соответствует разделу public класса TtdStack.

Листинг 3.22. Класс TtdArrayStack

TtdArrayStack = class private

FCount : longint;

FDispose : TtdDisposeProc;

FList : TList;

FName : TtdNameString;

protected

procedure asError(aErrorCode : integer;

const aMethodName : TtdNameString);

procedure asGrow;

public

constructor Create(aDispose : TtdDisposeProc;

aCapacity : integer);

destructor Destroy; override;

procedure Clear;

function Examine : pointer;

function IsEmpty : boolean;

function Pop : pointer;

procedure Push(aItem : pointer);

property Count : longint read FCount;

property Name : TtdNameString read FName write FName;

end;

Конструктор и деструктор, соответственно, создает и удаляет экземпляр класса TList. Конструктор в качестве входного параметра принимает емкость стека. Это только начальное значение для количества элементов в экземпляре массива, предназначенное только для повышения эффективности класса, а не для установки каких-либо ограничений.

Листинг 3.23. Конструктор и деструктор класса TtdArrayStack

constructor TtdArrayStack.Create(aDispose : TtdDisposeProc;

aCapacity : integer);

begin

inherited Create;

{сохранить процедуру удаления}

FDispose := aDispose;

{создать внутренний экземпляр класса TList и установить его емкость равной aCapacity}

FList := TList.Create;

if (aCapacity <= 1) then

aCapacity 16;

FList.Count := aCapacity;

end;

destructor TtdArrayStack.Destroy;

begin

FList.Free;

inherited Destroy;

end;

Методы Push и Pep содержат довольно-таки интересный код. Внутреннее поле FCount используется для двух целей. Первая цель связана с хранением количества элементов в стеке, а вторая предполагает его использование в качестве указателя стека. Для заталкивания элемента в стек мы записываем его в позицию с индексом FCount и увеличивает FCount на единицу. Для выталкивания элемента из стека мы выполняем обратную операцию: уменьшаем значение FCount на единицу и возвращаем элемент с индексом FCount.

Листинг 3.24. Методы Push и Pop класса TtdArrayStack

procedure TtdArrayStack.asGrow;

begin

FList.Count := (FList.Count * 3) div 2;

end;

function TtdArrayStack.Pop : pointer;

begin

{убедиться, что стек не пуст}

if (Count = 0) then

asError(tdeStackIsEmpty, 'Pop');

{уменьшить значение счетчика на единицу}

dec(FCount);

{выталкиваемый элемент находиться в конце списка}

Result := FList[FCount];

end;

procedure TtdArrayStack.Push(aItem : pointer);

begin

{проверить, полон ли стек; если стек полон, увеличить емкость списка}

if (FCount = FList.Count) then

asGrow;

{добавить элемент в конец стека}

FList[FCount] := aItem;

{увеличить значение счетчика на единицу}

inc(FCount);

end;

Полный код класса TtdArrayStack можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDStkQue.pae.

Пример использования стека

Стеки используются в случае, когда требуется вычислить элементы в обратном порядке, а затем перестроить их в прямой порядок. Одним из самых простых примеров может служить изменение порядка символов в строке. При наличии стека символов задание становится очень простым: затолкнуть символы из строки в стек, а затем вытолкнуть их в обратном порядке. (Разумеется, существуют и другие методы изменения порядка символов в строке.)

Интересной вариацией этой темы является преобразование целого значения в строку. В языке Object Pascal имеются функции str и intToStr, которые позволяют решать поставленную задачу далеко не с нуля, но, тем не менее, задача остается достаточно интересной.

Давайте четко запишем условия задачи. Необходимо написать функцию, которая в качестве параметра принимала бы значение типа longint и возвращала бы значение в форме строки.

Внутри функции нужно будет вычислять цифры, соответствующие целочисленному значению. Простейший метод таких вычислений - вычислить остаток от деления значения на 10 (это будут числа от 0 до 9 включительно), сохранить его где-нибудь, поделить значение на 10 (чтобы избавиться от только что вычисленного нами значения) и повторить процесс. Цикл вычислений продолжается до тех пор, пока не будет получено значение 0.

Давайте применим описанный алгоритм (да-да, это алгоритм!) к числу 123. Остаток от деления 123 на 10 равен 3. Записываем остаток. Делим 123 на 10. Получаем 12. Остаток от деления 12 на 10 равен 2. Записываем остаток. Делим 12 на 10. Получаем 1. Остаток от деления 1 на 10 равен 1. Записываем остаток. Делим 1 на 10. Получаем 0. Завершаем вычисления. Цифры были вычислены в следующем порядке: 3, 2, 1. Однако в строке они должны находиться в обратном порядке. Мы не можем записывать цифры в строку по мере их вычисления (какой длины должна быть строка?).

Можно предложить заталкивать цифры в стек по мере их вычисления, а после выполнения вычислений определить количество элементов в стеке (т.е. длину строки) и постепенно выталкивать их в строку. Соответствующий код приведен в листинге 3.25.

Листинг 3.25. Преобразование целочисленного значения в строку

function tdlntToStr(aValue : longint): string;

var

ChStack : array [0..10] of char;

Перейти на страницу:

Джулиан Бакнелл читать все книги автора по порядку

Джулиан Бакнелл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Фундаментальные алгоритмы и структуры данных в Delphi отзывы

Отзывы читателей о книге Фундаментальные алгоритмы и структуры данных в Delphi, автор: Джулиан Бакнелл. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*