Kniga-Online.club
» » » » Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Читать бесплатно Е. Миркес - Учебное пособие по курсу «Нейроинформатика». Жанр: Программирование издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

В отличие от ранее рассмотренных элементов, точка ветвления имеет только один вход и несколько выходов. Обозначим входной сигнал через x, а выходные через x1, x2, …, xn, причем xi=x (рис. 8а). При обратном функционировании на выходные связи точки ветвления подаются сигналы (рис. 8б). На входной связи должен получаться сигнал, равный . Можно сказать, что точка ветвления при обратном функционировании переходит в сумматор, или, другими словами, сумматор является двойственным по отношению к точке ветвления.

Сумматор

Сумматор считает сумму входных сигналов. Обычный сумматор не имеет параметров. При описании прямого и обратного функционирования ограничимся описанием простого сумматора, поскольку функционирование адаптивного и квадратичного сумматора может быть получено как прямое и обратное функционирование сети в соответствии с их схемами, приведенными на рис. 3б и 3в. Обозначим входные сигналы сумматора через x1, x2, …, xn (рис. 9а). Выходной сигнал равен . При обратном функционировании на выходную связь сумматора подается сигнал (рис. 9б). На входных связях должны получаться сигналы, равные

Из последней формулы следует, что все сигналы обратного функционирования, выдаваемые на входные связи сумматора, равны. Таким образом сумматор при обратном функционировании переходит в точку ветвления, или, другими словами, сумматор является двойственным по отношению к точке ветвления.

Нелинейный Паде преобразователь

Нелинейный Паде преобразователь или Паде элемент имеет два входных сигнала и один выходной. Обозначим входные сигналы через x1, x2. Тогда выходной сигнал Паде элемента равен x1/x2 (рис. 10а). При обратном функционировании на выход Паде элемента подается сигнал ∂F/∂(x1/x2).

На входах сигналов x1 и x2 и должны быть получены сигналы обратного функционирования, равные и , соответственно (рис. 10б).

Нелинейный сигмоидный преобразователь

Нелинейный сигмоидный преобразователь или сигмоидный элемент имеет один входной сигнал и один параметр. Сторонники чистого коннекционистского подхода считают, что обучаться в ходе обучения нейронной сети могут только веса связей. С этой точки зрения параметр сигмоидного элемента является не обучаемым и, как следствие, для него нет необходимости вычислять поправку. Однако, часть исследователей полагает, что нужно обучать все параметры всех элементов сети. Исходя из этого, опишем вычисление этим элементом поправки к содержащемуся в нем параметру.

Обозначим входной сигнал через x, параметр через α, а вычисляемую этим преобразователем функцию через σ(α,x) (рис. 11а). При обратном функционировании на выход сигмоидного элемента подается сигнал ∂F/∂σ(α,x).

На входе сигнала должен быть получен сигнал обратного функционирования, равный , а на входе параметра поправка, равная (рис. 11б).

Произвольный непрерывный нелинейный преобразователь

Произвольный непрерывный нелинейный преобразователь имеет несколько входных сигналов, а реализуемая им функция зависит от нескольких параметров. Выходной сигнал такого элемента вычисляется как некоторая функция φ(x,α), где x — вектор входных сигналов, а a — вектор параметров. При обратном функционировании на выходную связь элемента подается сигнал обратного функционирования, равный ∂F/∂φ.

На входы сигналов выдаются сигналы обратного функционирования, равные , а на входах параметров вычисляются поправки, равные

Пороговый преобразователь

Пороговый преобразователь, реализующий функцию определения знака (рис. 12а), не является элементом с непрерывной функцией, и, следовательно, его обратное функционирование не может быть определено из требования вычисления градиента. Однако, при обучении сетей с пороговыми преобразователями полезно иметь возможность вычислять поправки к параметрам. Так как для порогового элемента нельзя определить однозначное поведение при обратном функционировании, предлагается доопределить его, исходя из соображений полезности при конструировании обучаемых сетей. Основным методом обучения сетей с пороговыми элементами является правило Хебба (подробно рассмотрено во второй части главы). Оно состоит из двух процедур, состоящих в изменении «весов связей между одновременно активными нейронами». Для этого правила пороговый элемент при обратном функционировании должен выдавать сигнал обратного функционирования, совпадающий с выданным им сигналом прямого функционирования (рис. 12б). Такой пороговый элемент будем называть зеркальным. При обучении сетей Хопфилда [312], подробно рассмотренном во второй части главы, необходимо использовать «прозрачные» пороговые элементы, которые при обратном функционировании пропускают сигнал без изменения (рис. 12в).

Правила остановки работы сети

При использовании сетей прямого распространения (сетей без циклов) вопроса об остановке сети не возникает. Действительно, сигналы поступают на элементы первого (входного) слоя и, проходя по связям, доходят до элементов последнего слоя. После снятия сигналов с последнего слоя все элементы сети оказываются «обесточенными», то есть ни по одной связи сети не проходит ни одного ненулевого сигнала. Сложнее обстоит дело при использовании сетей с циклами. В случае общего положения, после подачи сигналов на входные элементы сети по связям между элементами, входящими в цикл, ненулевые сигналы будут циркулировать сколь угодно долго.

Существует два основных правила остановки работы сети с циклами. Первое правило состоит в остановке работы сети после указанного числа срабатываний каждого элемента. Циклы с таким правилом остановки будем называть ограниченными.

Второе правило остановки работы сети — сеть прекращает работу после установления равновесного распределения сигналов в цикле. Такие сети будем называть равновесными. Примером равновесной сети может служить сеть Хопфилда [312] (см. разд. «Сети Хопфилда»).

Архитектуры сетей

Как уже отмечалось ранее, при конструировании сетей из элементов можно построить сеть любой архитектуры. Однако и при произвольном конструировании можно выделить наиболее общие признаки, существенно отличающие одну сеть от другой. Очевидно, что замена простого сумматора на адаптивный или даже на квадратичный не приведут к существенному изменению структуры сети, хотя число обучаемых параметров увеличится. Однако, введение в сеть цикла сильно изменяет как структуру сети, так и ее поведение. Таким образом можно все сети разбить на два сильно отличающихся класса: ациклические сети и сети с циклами. Среди сетей с циклами существует еще одно разделение, сильно влияющее на способ функционирования сети: равновесные сети с циклами и сети с ограниченными циклами.

Большинство используемых сетей не позволяют определить, как повлияет изменение какого-либо внутреннего параметра сети на выходной сигнал. На рис. 13 приведен пример сети, в которой увеличение параметра α приводит к неоднозначному влиянию на сигнал x2: при отрицательных x1 произойдет уменьшение x2, а при положительных x1 — увеличение. Таким образом, выходной сигнал такой сети немонотонно зависит от параметра α. Для получения монотонной зависимости выходных сигналов сети от параметров внутренних слоев (то есть всех слоев кроме входного) необходимо использовать специальную монотонную архитектуру нейронной сети. Принципиальная схема сетей монотонной архитектуры приведена на рис. 14.

Основная идея построения монотонных сетей состоит в разделении каждого слоя сети на два — возбуждающий и тормозящий. При этом все связи в сети устроены так, что элементы возбуждающей части слоя возбуждают элементы возбуждающей части следующего слоя и тормозят тормозящие элементы следующего слоя. Аналогично, тормозящие элементы возбуждают тормозящие элементы и тормозят возбуждающие элементы следующего слоя. Названия «тормозящий» и «возбуждающий» относятся к влиянию элементов обеих частей на выходные элементы.

Перейти на страницу:

Е. Миркес читать все книги автора по порядку

Е. Миркес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Учебное пособие по курсу «Нейроинформатика» отзывы

Отзывы читателей о книге Учебное пособие по курсу «Нейроинформатика», автор: Е. Миркес. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*