Стивен Барретт - Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С
Имеется несколько способов, с помощью которых можно перепрограммировать резидентную память МК на плате отладки MC68HC912B32EVB. Все они предполагают использование двух плат отладки, одна из которых реализует функцию интерфейса BDM для связи МК второй платы с ПК с целью программирования микроконтроллера второй платы. Подробная методика организации программирования таким способом изложена в [6].
В этом разделе мы расскажем, как программировать резидентную Flash память МК семейства 68HC12, воспользовавшись кабелем интерфейса BDM типа CABLE12 фирмы P&E Microcomputer Systems и программным обеспечением PROG12Z FLASH/EEPROM. Заметим, что, несмотря на название, CABLE12 не является лишь соединителем. В его состав входят аппаратные средства интерфейса между ПК и МК семейства 68HC12, которые позволяют осуществлять взаимодействие этих двух устройств в процессе отладки программ и для занесения программы в энергонезависимую память МК.
Конфигурация системы, использующей эти инструментальные средства, показана на рис. 7.42. Как видно из рисунка, CABLE12 связан с ведущим ПК через стандартный 25-жильный кабель параллельного порта. С другой стороны CABLE12 связан с программируемой B32 EVB шестижильным BDM кабелем.
Рис. 7.42. Схема соединения компонентов для программирования резидентной энергонезависимой памяти МК семейства 68HC12/HCS12
Этот кабель подключается к разъему W9 отладочной платы MC68HC912B32EVB. Красный провод кабеля соответствует штырьку 1 на колодке W9.
Программируемый МК B32 EVB связан также с ведущим ПК через последовательный порт связи. Он должен, кроме того, иметь обычные кабели подключения питания (+5 В, земля). Дополнительно, в процессе программирования должны быть поданы напряжение +12 В (Vpp) и земля на колодку W8. Будьте внимательны, не перепутайте полярность при подключении этого питания. Кроме того, колодка W7 должна быть конфигурирована для Vpp.
Как только аппаратные средства cконфигурированы, можно программировать флеш-память EEPROM в следующей последовательности:
1. Подать питание на B32 (+5 В и +12 В).
2. Найти программное обеспечение PROG12Z на вашем компьютере (c:pemicroProg12zprog12z).
3. Дважды щелкнуть на prog12z.
4. Появляется окно Connect Assistant, которое поможет установить связь с переходная приставка CABLE12 BDM интерфейс.
• Проверьте параметры настройки окна, затем нажмите OK.
• В окне состояния должно появиться сообщение о появлении связи программы prog12z с интерфейсом CABLE12 BDM.
• Если связь ПК с интерфейсом CABLE12 отсутствует, на экране ПК появится информация для поиска неисправностей.
5. Должно появиться всплывающее меню Specify Programming Algorithm to Use!
• Выберите правильный программный модуль с расширением '*.12P' P&E, чтобы использовать необходимый драйвер программирования. Например, чтобы программировать Flash память объемом 32Кб, входящую в состав МК B32, выберите 912B32_32K.12Р.
• Окно состояния показывает, что выбранный драйвер программирования загружен.
6. Затем появляется окно Base Address.
• Вы должны определить базовый адрес программируемой Flash памяти.
• Информация о базовом адресе обеспечивается в карте памяти программируемого МК, которая, в том числе, приводится в Руководстве пользователя отладочной платы MС68HC912B32EVB (68HC12 M68EVB912B32 Evaluation Board User's Manual, Таблица 3–5, страницы 3–55)
• Адрес начала блока Flash памяти равен $8000.
• Введите это значение в ПК и нажмите OK.
7. Щелкните SM Show Module, чтобы отобразить текущее содержание модуля Flash памяти в МК.
8. Выполните операцию стирания текущего модуля перед программированием нового модуля во Flash память.
Предостережение: программа монитора D-BUG12 пока еще во Flash-памяти, это и есть текущий модуль в памяти МК B32. Как только вы сотрете модуль, код монитора отладки D-BUG12 будет потерян.
Сотрите модуль.
9. Выберите SS Specify Record и затем *.S19 для загрузки в буфер программы программатора на ПК модуля, подлежащего программирования в МК.
10. Выберите PM, чтобы инициировать программирование модуль во Flash-память МК.
7.9. Заключение по главе 7
В этой главе мы рассмотрели ряд встроенных микроконтроллерных систем на базе МК 68HC12 и HCS12. В частности мы описали робот, движущийся в лабиринте, лазерный проектор, цифровой вольтметр, стабилизатор скорости вращения двигателя с оптическим тахометром, парящий робот, систему защиты компьютерной сети на базе нечеткой логики и электронную версию популярной игры в «15». Для всех этих систем мы привели описание проекта, системные требования, основную информацию, структуру программы, блок схему алгоритма и код программы на языке Си. Хотя функции встроенных систем существенно различаются, мы показали, что для их создания можно использовать одну и ту же методику.
7.10. Что еще прочитать?
1. American National Standards Institute (ANSI) Z136.1, Safe Use of Lasers (ANSI Z136.1), 1993.
2. Cooper, W. D. Electronic Instrumentation and Measurement Techniques. Upper Saddle River, NJ: Prentice-Hall, 1970.
3. Edmund Industrial Optics, Barrington, NJ, www.edmundoptics.com, 2004.
4. GSI Lumonics, «General Scanning Scanners and Drivers.» www.gsilumonics.com, 2004.
5. Honeywell Sensing and Control, www.honeywell.com/sensing, 2004.
6. Lind, Magnus. Motorola M68HC912B32EVB Evaluation Board: PCPODTarget Set Up, Western Washington University Electronics Engineering Technology, Bellingham, WA, http://eet.etec.www.edu.
7. 68HC12 M68EVB912B32 Evaluation Board User's Manual, 68EVB912B32 UM/D, Motorola Inc., 1997.
8. LINOS Photonics, Milford, MA, www.linos.com. Newport Corporation Irvine, CA, www.newport.com, 2004.
10. Pack, D. J., W. Strelein, S. Webster, and R. Cunningham. «Detecting HTTP Tunneling Activities.» Paper presented at the annual Information Assurance Workshop, West Point, NY, June 2002.
11. Servo-Tek, «Encoders and Other Position/Velocity Sensors for Motion Control», www.servotek.com, 2004.
12. Vij, D. R. and K. Mahesh. Medical Applications of Lasers. Kluwer Academic Publishers, 2002.
13. Vincent Associates, «Uniblitz Electronic Drive Equipment and Shutters.» www.uniblitz.com, 2004.
7.11. Вопросы и задания
Основные1. Опишите принцип работы ИК локатора (пары излучатель-приемник), который используется роботом для обнаружения стенок лабиринта.
2. Зачем нужен роботу датчик Холла?
3. Опишите принцип работы ЦАП с параллельным и последовательным интерфейсом.
4. Что такое лазер?
5. Что такое гальванометр?
6. Опишите два способа увеличения разрешающей способности модуля ATD в системах на базе МК 68HC12.
7. Опишите принцип действия оптического кодера.
8. Для чего во встроенных системах применяется прерывания от модуля меток реального времени RTI ?
9. Какие преимущества можно извлечь, применяя при проектировании функциональные схемы системы, структуры программы и блок-схемы алгоритма?
10. В чем различия между системными требованиями и параметрами системы при проектировании встроенных МП систем?
11. Какая процедура может помочь в выборе конкретной модели МК семейства 68HC12, удовлетворяющего требованиям проекта, из большого числа модификаций МК этой серии?
Более сложные1. Создайте блок-схемы алгоритмов для каждой функции, используемой системой робота, движущегося в лабиринте (раздел 7.1.5).
2. Разработайте эксперимент, позволяющий точно установить, удовлетворяет ли проектному заданию время запаздывания, формируемое устройством задержки в лазерном проекторе.
3. Каковы различия между лазерами различных типов?
4. Если удалить инверторы 74HC04 из структуры входного интерфейса лазерной системы, то как можно обеспечить программную корректировку такого изменения?
5. Пересчитайте значения сопротивлений и Vref, чтобы обеспечить работу DAC0808LCN при питании этой ИС напряжением ±4 В.
6. Разработайте структуру программы и блок-схему алгоритма для поддержки функций цифрового вольтметра.
7. Какова разрешающая способность 8-разрядного цифрового вольтметра, описанного в разделе 7.3? Чем она определяется? Опишите метод, позволяющий увеличить разрешающую способность. Подсказка: вспомните назначение бита S10BM в регистре ATDCTL4. В чем заключается решение проблемы?
8. В разделе, описывающем проект стабилизации частоты вращения двигателя, мы указали, что каждое инкрементирование коэффициента заполнения ШИМ приводит к изменению скорости приблизительно на 8.5 об/мин. Вы согласны с результатами этого анализа? Подтвердите ваш ответ вычислениями.
9. Создайте блок-схемы алгоритмов для каждой функции, используемой системой стабилизации частоты вращения двигателя, рассмотренной в разделе 7.4.5.
10. Разработайте методику испытаний системы стабилизации частоты вращения двигателя, основанную на восходящих методах проектирования.
Исследовательские1. Замените параллельный интерфейс цифро-аналогового преобразователя DAC0808LCN в устройстве управления лазерным проектором на последовательный в стандарте SPI. Внесите изменения в схему электрических соединений для ЦАП и также в текст функции move-laser (x,y) для программного обслуживания ЦАП.
2. Измените код, содержащийся в laser.с (раздел 7.2.6) таким образом, чтобы выбранный образ постоянно воспроизводился, пока не будет выбран другой.