Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим
Образование катится вниз? Введите стандартизированные тесты для измерения результативности и примените санкции к учителям и школам, которые не дотягивают до нужного уровня. И если тесты и вправду могут оценить способности школьников, то вопрос о качестве преподавания или потребности в творческой, гибкой, современной рабочей силе остается открытым. Но данные не берут это в расчет.
Хотите предотвратить терроризм? Создайте многослойные списки людей для обязательного досмотра или запрета на вылет, чтобы обеспечить охрану порядка в небе. Впрочем, защита, которую такие списки предлагают, весьма сомнительна. Известен случай, когда сенатор от штата Массачусетс Тед Кеннеди, случайно попавший в список, был задержан и подвержен обыску только потому, что его имя и фамилия совпали с именем и фамилией другого человека в базе данных.
У тех, кто имеет дело с данными, в ходу выражение, отражающее суть некоторых проблем: «Мусор на входе — мусор на выходе». Иногда причина в низком качестве исходной информации, но чаще — в злоупотреблении самим анализом. Из-за больших данных эти проблемы могут возникать чаще или с более существенными последствиями.
Вся деятельность компании Google, как уже было показано в этой книге на многочисленных примерах, построена на данных. Несомненно, они обусловили значительную долю успеха компании. Однако время от времени они же приводят ее к промахам. Сооснователи Google Ларри Пейдж и Сергей Брин длительное время запрашивали от соискателей их балл по тесту SAT (англ. Scholastic Assessment Test — «академический оценочный тест») при поступлении в колледж, а также средний балл при выпуске. Пейдж и Брин рассуждали так: первый показатель отражает потенциал кандидата, а второй — его достижения. Таким образом, состоявшиеся руководители в возрасте 40 лет, которые рассматривались на ту или иную должность, к своему откровенному недоумению, могли быть отсеяны из-за недобора баллов. Компания еще долгое время продолжала требовать эти цифры даже после того, как ее внутренние исследования показали, что между баллами и эффективностью работы нет корреляций.[152]
Google следовало бы лучше знать, как не попасться на удочку ложной прелести данных, ведь показатели практически не оставляют места для изменений в жизни человека. Они не берут в расчет знания помимо академических. Они не могут отразить достоинства людей гуманитарных, а не научных и технических специальностей, где инновационные идеи легче измерить. Одержимость данными в кадровых целях вызывает особое недоумение ввиду того, что сами основатели Google являются выпускниками школ Монтессори, в которых особое внимание уделяется именно обучению, а не оценкам. Кроме того, такой подход повторяет прошлые ошибки американских технологических электростанций, в которых резюме кандидатов ставили выше их способностей. Какими были бы шансы Ларри и Сергея занять руководящие должности в легендарной корпорации Bell Labs, учитывая их незаконченное высшее образование доктора философии? По стандартам Google ни Билл Гейтс, ни Марк Цукерберг не получили бы место, так как не имеют высшего образования.
Зависимость компании от данных порой зашкаливает. Марисса Майер, в то время один из руководителей высшего звена Google, однажды дала задание сотрудникам проверить, какой из 41 оттенка синего наиболее популярен у пользователей, чтобы определить цвет панели инструментов на сайте.[153] Диктатура данных в Google была доведена до крайности и вызвала мятеж.
В 2009 году ведущий дизайнер Google Дуг Боумен уволился в гневе, потому что не выдержал постоянного количественного измерения всего и вся. «Недавно я участвовал в дискуссии по поводу того, какой должна быть ширина границы: 3, 4 или 5 пикселей. Меня попросили обосновать свой выбор. Я не могу работать в таких условиях, — написал он в блоге о своей отставке. — Когда в компании одни инженеры, они все превращают в инженерное решение вопросов. Сводят все к простым логическим задачам. Эти данные в конечном счете становятся костылем, тормозящим движение каждого решения, парализуя компанию».[154]
Гениальность не зависит от данных. Стив Джобс мог бы долгие годы непрерывно совершенствовать ноутбук Mac на основе отчетов об эксплуатации, но он воспользовался своей интуицией, а не данными, чтобы выпустить на рынок iPod, iPhone и iPad. Он полагался на свое шестое чувство. «Знать, чего хотят покупатели, не их забота», — сказал он репортеру, рассказывая, что не проводил исследование рынка перед запуском iPad.[155]
В книге «Благими намерениями государства» антрополог Джеймс Скотт из Йельского университета рассказывает о том, как правительства, возводя в культ количественные измерения и данные, в конечном счете скорее ухудшают качество жизни людей, чем улучшают его. Они прибегают к картам для определения преобразований в обществах, но ничего не знают о людях на местах. С помощью огромных таблиц данных об урожаях они принимают решение о коллективизации сельского хозяйства, ничего в нем не смысля. Они берут на вооружение все несовершенные, естественные способы взаимодействия, которыми люди пользовались в течение долгого времени, и подстраивают их под свои нужды, иногда просто ради того, чтобы удовлетворить свое желание привести все к исчисляемому порядку. Информация, по мнению Скотта, часто служит для расширения возможностей власть имущих.[156]
Это диктатура данных с большой буквы. Из-за подобного высокомерия США начали войну во Вьетнаме, руководствуясь, в частности, количеством убитых, а не более разумными показателями. «Вы правы, что не все сложные человеческие ситуации, которые только можно представить, могут быть полностью сведены к линиям на графике, выражены в процентных точках на диаграмме или отражены в цифрах в балансе компании, — произнес Макнамара в 1967 году, в период нарастающих национальных протестов. — Но в действительности все может быть обосновано. И не измерять количественно то, что можно измерить, — все равно что довольствоваться меньшим, чем полный спектр причин».[157] Если бы только правильные данные использовались должным образом, а не просто почитались за то, что они есть.
В течение 1970-х годов Роберт Макнамара удерживал пост главы Всемирного банка, а в 1980 году стал «голубем мира» — ярым критиком ядерного оружия и сторонником охраны окружающей среды. Позже в результате переоценки ценностей он написал мемуары «Взгляд в прошлое», в которых критиковал образ мышления, стоящий за военными действиями, и собственные решения на посту министра обороны. «Мы были неправы, совершенно неправы», — писал Макнамара, в то время как речь шла о масштабной военной стратегии. Однако по вопросу данных и, в частности, подсчета убитых он остался далек от раскаяния. Макнамара признался, что статистика была «недостоверной или ошибочной». «Но все факторы, которые вы можете подсчитать, вы обязаны подсчитать. Потеря убитыми — один из них…» Он умер в 2009 году в возрасте 93 лет, считаясь человеком умным, но не мудрым.
Соблазнившись большими данными, мы рискуем совершить страшную ошибку, как Макнамара, или настолько сконцентрироваться на данных и власти, которую они сулят, что будем не в состоянии оценить их ограничения. Чтобы наглядно представить эквивалент подсчета убитых в виде больших данных, достаточно снова вернуться к Google Flu Trends. Рассмотрим ситуацию (не такую уж невероятную), когда смертельный грипп бушует по всей стране. Медицинские работники были бы признательны за возможность в режиме реального времени прогнозировать крупнейшие очаги с помощью поисковых запросов. Они бы знали, где нужна помощь.
Однако во время такого кризиса политические лидеры могут возразить, что знать наибольшие очаги заболевания и пытаться остановить их распространение недостаточно. Они призывают ввести режим всеобщего карантина (а не только для населения в охваченных регионах), по сути, излишнего. Большие данные дают возможность быть адресными и применять карантин только к отдельным пользователям, чьи поисковые запросы в значительной степени коррелируют с гриппом. Таким образом, мы получаем данные о тех, кого нужно изолировать. Федеральные агенты, вооруженные списками IP-адресов и информацией GPS о мобильных устройствах, могут объединить отдельные запросы веб-поиска в карантинные центры.
Может показаться, что это оправданно, однако в корне неправильно. Корреляция не означает причинности. Эти люди могут болеть гриппом, но могут и быть здоровыми. Их необходимо обследовать. В такой ситуации люди стали бы заложниками прогноза. Что еще более важно, они стали бы жертвами апологии данных, которые по самой природе своей не могут отразить информацию такого рода. Суть фактического исследования Google Flu Trends состоит в том, что условия поиска связаны со вспышкой. Но причины тому могут быть совершенно разными: например, сотрудники могли услышать, как кто-то в офисе чихнул, и решили поискать в интернете информацию о том, как защититься, а сами при этом здоровы.