Марк Руссинович - 1.Внутреннее устройство Windows (гл. 1-4)
Для захвата ресурсов предназначен целый ряд функций: ExAcquireResour-ceSharedLite, ExAcquireResourceExclusiveLite, ExAcquireSharedStarveExclusive, ExAcquireWaitForExclusive и ExTryToAcquireResourceExclusiveLite. Эти функции документированы в DDK.
ЭКСПЕРИМЕНТ: перечисление захваченных ресурсов исполнительной системы
Команда !locks отладчика ядра ищет в пуле подкачиваемой памяти объекты ресурсов исполнительной системы и выводит их состояние. По умолчанию эта команда перечисляет только захваченные на данный момент ресурсы, но ключ — d позволяет перечислять все ресурсы исполнительной системы. Вот фрагмент вывода этой команды:
Заметьте, что счетчик конкурирующих потоков (contention count), извлекаемый из структуры ресурса, фиксирует, сколько раз потоки пытались захватить данный ресурс и были вынуждены переходить в состояние ожидания из-за того, что он уже занят.
Для изучения деталей конкретного объекта ресурса (в частности, кто владеет ресурсом и кто ждет его освобождения) укажите ключ — v и адрес ресурса:
lkd›!locks — v 0x805439a0
Блокировки с заталкиванием указателяБлокировки с заталкиванием указателя (push locks), впервые появившиеся в Windows XP, являются еще одним оптимизированным механизмом синхронизации, который основан на объекте «событие» (в Windows Server 2003 такие блокировки базируются на внутреннем синхронизирующем объекте KGATE) и подобно быстрым мьютексам заставляет ждать этот объект только при наличии конкуренции. Такие блокировки имеют преимущества над быстрыми мьютексами, так как их можно захватывать как в разделяемом, так и в монопольном режиме. Они не документированы и не экспортируются ядром, так как зарезервированы для использования самой операционной системой.
Существует два типа блокировок с заталкиванием указателя: обычный и с поддержкой кэша (cache aware). Первый тип занимает в памяти тот же объем, что и указатель (4 байта в 32-разрядных системах и 8 байтов в 64-разрядных). Когда поток захватывает обычную блокировку с заталкиванием указателя, код этой блокировки помечает ее как занятую, если она на данный момент свободна. Если блокировка захвачена для монопольного доступа или если потоку нужно захватить ее монопольно, а она уже захвачена для разделяемого доступа, ее код создает в стеке потока блок ожидания, инициализирует объект «событие» в этом блоке и добавляет последний в список ожидания, сопоставленный с блокировкой. Как только блокировка освобождается, ее код пробуждает ждущий поток (если таковой имеется), освобождая событие в блоке ожидания потока.
Второй тип создает обычную блокировку с заталкиванием указателя для каждого процессора в системе и сопоставляет ее с блокировкой с заталкиванием указателя, поддерживающей кэш. Когда потоку нужно захватить такую блокировку, он просто захватывает обычную блокировку, созданную для текущего процессора в соответствующем режиме доступа.
Подобные блокировки используются, в том числе, диспетчером объектов, когда возникает необходимость в защите глобальных структур данных и дескрипторов защиты объектов, а также диспетчером памяти для защиты структур данных AWE.
Обнаружение взаимоблокировки с помощью Driver VerifierВзаимоблокировка (deadlock) — это проблема синхронизации, возникающая, когда два потока или процессора удерживают ресурсы, нужные другому, и ни один из них не отдает их. Такая ситуация может приводить к зависанию системы или процесса. Утилита Driver Verifier, описываемая в главах 7 и 9, позволяет проверять возможность взаимоблокировки, в том числе на спин-блокировках, быстрых и обычных мьютексах. O том, как пользоваться Driver Verifier для анализа зависания системы, см. главу 14.
Системные рабочие потокиПри инициализации Windows создает несколько потоков в процессе System, которые называются системными рабочими потоками (system worker threads). Они предназначены исключительно для выполнения работы по поручению других потоков. Bo многих случаях потоки, выполняемые на уровне «DPC/dispatch», нуждаются в вызове таких функций, которые могут быть вызваны только при более низком IRQL. Например, DPC-процедуре, выполняемой в контексте произвольного потока при IRQL уровня «DPC/dispatch» (DPC может узурпировать любой поток в системе), нужно обратиться к пулу подкачиваемой памяти или ждать на объекте диспетчера для синхронизации с потоком какого-либо приложения. Поскольку DPC-процедура не может понизить IRQL, она должна передать свою задачу потоку, который сможет выполнить ее при IRQL ниже уровня «DPC/dispatch».
Некоторые драйверы устройств и компоненты исполнительной системы создают собственные потоки для обработки данных на уровне «passive», но большинство вместо этого использует системные рабочие потоки, что помогает избежать слишком частого переключения потоков и чрезмерной нагрузки на память из-за диспетчеризации дополнительных потоков. Драйвер устройства или компонент исполнительной системы запрашивает сервисы системных рабочих потоков через функцию исполнительной системы ExQueueWorkItem или IoQueueWorkItem. Эти функции помещают рабочий элемент (work item) в специальную очередь, проверяемую системными рабочими потоками (см. раздел «Порты завершения ввода-вывода» главы 9).
Рабочий элемент включает указатель на процедуру и параметр, передаваемый потоком этой процедуре при обработке рабочего элемента. Процедура реализуется драйвером устройства или компонентом исполнительной системы, выполняемым на уровне «passive».
Например, DPC-процедура, которая должна ждать на объекте диспетчера, может инициализировать рабочий элемент, который указывает на процедуру в драйвере, ждущем на объекте диспетчера, и, возможно, на указатель на объект. Ha каком-то этапе системный рабочий поток извлекает из своей очереди рабочий элемент и выполняет процедуру драйвера. После ее выполнения системный рабочий поток проверяет, нет ли еще рабочих элементов, подлежащих обработке. Если нет, системный рабочий поток блокируется, пока в очередь не будет помещен новый рабочий элемент. Выполнение DPC-процедуры может и не закончиться в ходе обработки ее рабочего элемента системным рабочим потоком. (B однопроцессорной системе выполнение этой процедуры всегда завершается до обработки ее рабочего элемента, так как на уровне IRQL «DPC/dispatch» потоки не планируются.)
Существует три типа системных рабочих потоков:
• отложенные (delayed worker threads) — выполняются с приоритетом 12, обрабатывают некритичные по времени рабочие элементы и допускают выгрузку своего стека в страничный файл на время ожидания рабочих элементов;
• критичные (critical worker threads) — выполняются с приоритетом 13, обрабатывают критичные по времени рабочие элементы. B Windows Server их стек всегда находится только в физической памяти;
• гиперкритичный (hypercritical worker thread) — единственный поток, выполняемый с приоритетом 15. Его стек тоже всегда находится в памяти. Диспетчер процессов использует гиперкритичные по времени рабочие элементы для выполнения функции, освобождающей завершенные потоки.
Число отложенных и критичных системных рабочих потоков, создаваемых функцией исполнительной системы ExpWorkerInitialization, которая вызывается на ранних стадиях процесса загрузки, зависит от объема памяти в системе и от того, является ли система сервером. B таблице 3-11 показано количество потоков, изначально создаваемых в системах с различной конфигурацией. Вы можете указать ExpInitializeWorker создать дополнительно до 16 отложенных и 16 критичных системных рабочих потоков. Для этого используйте параметры AdditionalDelayedWorkerThreads и AdditionalCri-ticalWorkerThreads в разделе реестра HKLMSYSTEMCurrentControlSetCont-rol Session ManagerExecutive.
Исполнительная система старается балансировать число критичных системных рабочих потоков в соответствии с текущей рабочей нагрузкой. Каждую секунду функция исполнительной системы ExpWorkerThreadBalanceManager проверяет, надо ли создавать новый критичный рабочий поток. Кстати, критичный рабочий поток, создаваемый функцией ExpWorkerTbread-BalanceManager, называется динамическим (dynamic worker thread). Для создания такого потока должны быть выполнены следующие условия.
• Очередь критичных рабочих элементов не должна быть пустой.
• Число неактивных критичных потоков (блокированных в ожидании рабочих элементов или на объектах диспетчера при выполнении рабочей процедуры) должно быть меньше количества процессоров в системе.
• B системе должно быть менее 16 динамических рабочих потоков.
Динамические потоки завершаются через 10 минут пребывания в неактивном состоянии. B зависимости от рабочей нагрузки исполнительная система может создавать до 16 таких потоков.