Лариса Малинина - Основы информатики: Учебник для вузов
Можно писать программы непосредственно на машинном языке, хотя это и сложно. На заре компьютеризации (в начале 1950-х гг.) машинный язык был единственным языком, большего человек к тому времени не придумал. Для спасения программистов от сурового машинного языка программирования были созданы языки высокого уровня (т. е. немашинные языки), которые стали своеобразным связующим мостом между человеком и машинным языком компьютера. Языки высокого уровня работают через трансляционные программы, которые вводят «исходный код» (гибрид английских слов и математических выражений, который считывает машина) и в конечном итоге заставляют компьютер выполнять соответствующие команды, которые даются на машинном языке.
К языкам программирования высокого уровня можно отнести следующие: Fortran, Cobol, Algol, Pascal, Basic, C, C++, Java, HTML, Perl и другие.
С помощью языка программирования создается не готовая программа, а только ее текст, описывающий ранее разработанный алгоритм. Чтобы получить работающую программу, надо либо автоматически перевести этот текст в машинный код и затем использовать отдельно от исходного текста, либо сразу выполнять команды языка, указанные в тексте программы. Для этого используются программы-трансляторы.
Существует два основных вида трансляторов (рис. 8.4): интерпретаторы, которые сканируют и проверяют исходный код в один шаг, и компиляторы, сканирующие исходный код для производства текста программы на машинном языке, которая затем выполняется отдельно.
Рисунок 8.4. Виды трансляторов
При использовании компиляторов весь исходный текст программы преобразуется в машинные коды, и именно эти коды записываются в память микропроцессора. При использовании интерпретатора в память микропроцессора записывается исходный текст программы, а трансляция производится при считывании очередного оператора. Естественно, что быстродействие интерпретаторов намного ниже по сравнению с компиляторами, т. к. при использовании оператора в цикле он транслируется многократно. Однако при программировании на языке высокого уровня объем кода, который нужно хранить во внутренней памяти, может быть значительно меньше по сравнению с исполняемым кодом. Еще одним преимуществом применения интерпретаторов является легкая переносимость программ с одного процессора на другой.
Одно, часто упоминаемое преимущество интерпретаторной реализации состоит в том, что она допускает «непосредственный режим». Непосредственный режим позволяет вам задавать компьютеру задачу и возвращает вам ответ, как только вы нажмете клавишу ENTER. Кроме того, интерпретаторы имеют специальные атрибуты, которые упрощают отладку. Можно, например, прервать обработку интерпретаторной программы, отобразить содержимое определенных переменных, бегло просмотреть программу, а затем продолжить исполнение. Однако интерпретаторные языки имеют недостатки. Необходимо, например, иметь копию интерпретатора в памяти все время, тогда как многие возможности интерпретатора, а следовательно, и его возможности могут не быть необходимыми для исполнения конкретной программы. При исполнении программных операторов интерпретатор должен сначала сканировать каждый оператор с целью прочтения его содержимого (что этот человек просит меня сделать?), а затем выполнить запрошенную операцию. Операторы в циклах сканируются излишне много.
Компилятор – это транслятор текста на машинный язык, который считывает исходный текст. Он оценивает его в соответствии с синтаксической конструкцией языка и переводит на машинный язык. Другими словами, компилятор не исполняет программы, он их строит. Интерпретаторы невозможно отделить от программ, которые ими прогоняются, компиляторы делают свое дело и уходят со сцены. При работе с компилирующим языком, таким, как Турбо-Бейсик, вы придете к необходимости мыслить о ваших программах в признаках двух главных фаз их жизни: периода компилирования и периода прогона. Большинство программ будут прогоняться в четыре – десять раз быстрее их интерпретаторных эквивалентов. Если вы поработаете над улучшением, то сможете достичь 100-кратного повышения быстродействия. Оборотная сторона монеты состоит в том, что программы, расходующие большую часть времени на возню с файлами на дисках или ожидание ввода, не смогут продемонстрировать какое-то впечатляющее увеличение скорости.
Процесс создания программы называется программированием.
Выделяют несколько разновидностей программирования.
Алгоритмическое или модульноеОсновная идея алгоритмического программирования – разбиение программы на последовательность модулей, каждый из которых выполняет одно или несколько действий. Единственное требование к модулю – чтобы его выполнение всегда начиналось с первой команды и всегда заканчивалось на самой последней (то есть чтобы нельзя было попасть на команды модуля извне и передать управление из модуля на другие команды в обход заключительной).
Алгоритм на выбранном языке программирования записывается с помощью команд описания данных, вычисления значений и управления последовательностью выполнения программы.
Текст программы представляет собой линейную последовательность операторов присваивания, цикла и условных операторов. Таким способом можно решать не очень сложные задачи и составлять программы, содержащие несколько сот строк кода. После этого понятность исходного текста резко падает из-за того, что общая структура алгоритма теряется за конкретными операторами языка, выполняющими слишком детальные, элементарные действия. Возникают многочисленные вложенные условные операторы и операторы циклов, логика становится совсем запутанной, при попытке исправить один ошибочный оператор вносится несколько новых ошибок, связанных с особенностями работы этого оператора, результаты выполнения которого нередко учитываются в самых разных местах программы.
Структурное программированиеПри создании средних по размеру приложений (несколько тысяч строк исходного кода) используется структурное программирование, идея которого заключается в том, что структура программы должна отражать структуру решаемой задачи, чтобы алгоритм решения был ясно виден из исходного текста. Для этого надо иметь средства для создания программы не только с помощью трех простых операторов, но и с помощью средств, более точно отражающих конкретную структуру алгоритма. С этой целью в программирование введено понятие подпрограммы – набора операторов, выполняющих нужное действие и не зависящих от других частей исходного кода. Программа разбивается на множество мелких подпрограмм (занимающих до 50 операторов – критический порог для быстрого понимания цели подпрограммы), каждая из которых выполняет одно из действий, предусмотренных исходным заданием. Комбинируя эти подпрограммы, удается формировать итоговый алгоритм уже не из простых операторов, а из законченных блоков кода, имеющих определенную смысловую нагрузку, причем обращаться к таким блокам можно по названиям. Получается, что подпрограммы – это новые операторы или операции языка, определяемые программистом.
Возможность применения подпрограмм относит язык программирования к классу процедурных языков.
Наличие подпрограмм позволяет вести проектирование и разработку приложения сверху вниз – такой подход называется нисходящим проектированием. Сначала выде ляется несколько подпрограмм, решающих самые глобальные задачи (например, инициализация данных, главная часть и завершение), потом каждый из этих модулей детализируется на более низком уровне, разбиваясь, в свою очередь, на небольшое число других подпрограмм, и так происходит до тех пор, пока вся задача не окажется реализованной.
Такой подход удобен тем, что позволяет человеку постоянно мыслить на предметном уровне, не опускаясь до конкретных операторов и переменных. Кроме того, появляется возможность некоторые не реализовывать сразу подпрограммы, а временно откладывать, пока не будут закончены другие части. Например, если имеется необходимость вычисления сложной математической функции, то выделяется отдельная подпрограмма такого вычисления, но реализуется она временно одним оператором, который просто присваивает заранее выбранное значение. Когда все приложение будет написано и отлажено, тогда можно приступить к реализации этой функции.
Немаловажно, что небольшие подпрограммы значительно проще отлаживать, что существенно повышает общую надежность всей программы.
Очень важная характеристика подпрограмм – это возможность их повторного использования. С интегрированными системами программирования поставляются большие библиотеки стандартных подпрограмм, которые позволяют значительно повысить производительность труда за счет использования чужой работы по созданию часто применяемых подпрограмм.