Александр Ватаманюк - Апгрейд, ремонт и обслуживание компьютера
3.2. Установка материнской платы
Установка новой материнской платы – процедура довольно трудоемкая. Однако это совсем не означает, что вы сами с ней не справитесь. Главное – делать все последовательно, не спеша и знать некоторые технические особенности. Вам в этом помогут видеоуроки «Урок 3.1. Установка материнской платы» и «Урок 3.2. Подключение питания к материнской плате», которые покажут, как устанавливается и подключается материнская плата ATX-формата в корпус Middle Tower.
Примечание
Во многих корпусах крышка, на которую крепится материнская плата, снимается. Это связано, в первую очередь, с тем, что размеры материнской платы могут быть велики для выбранного корпуса, что мешает и ее свободной установке. Если у вас такой корпус, воспользуйтесь этой возможностью.
Как видите, установка материнской платы требует аккуратности, которую и необходимо проявить. В противном случае компьютер может работать со сбоями или вообще не работать. Причинами могут быть отсутствие контакта в одном из разъемов, микротрещины в структуре платы в результате ее прогибов и т. д.
Глава 4
Процессор и система охлаждения
• 4.1. Общие сведения о процессоре
• 4.2. Общие сведения о системе охлаждения
Как человек не может жить без кислорода, так и компьютер не может обходиться без процессора. Поскольку процессор – это одно из самых главных устройств в компьютере, то и условия функционирования ему нужно обеспечивать соответствующие. Самое важное из них – эффективная система охлаждения. Поэтому в этой главе мы рассмотрим процессор вместе с кулером.
4.1. Общие сведения о процессоре
Процессор (Central Processing Unit, CPU) – это один из основных компонентов компьютера, который выполняет арифметические и логические операции, заданные программой.
Физически процессор представляет собой интегральную микросхему (пластина кристаллического кремния прямоугольной формы), на которой размещены электронные блоки, реализующие все его функции. Кристалл-пластинка обычно помещается в плоский керамический корпус и соединяется золотыми (медными) проводниками с металлическими штырьками (выводами, с помощью которых процессор входит в процессорное гнездо на материнской плате компьютера) или металлическими площадками (сами выводы уже содержатся в процессорном слоте).
Процессор обладает множеством характеристик, с помощью которых можно осуществлять сравнение разных моделей процессоров от разных производителей. Именно факт наличия нескольких производителей влияет на разнообразие характеристик процессора, поскольку вступают в силу патенты на технологии, которые не могут повторяться разными производителями.
На сегодняшний день на рынке присутствует только два реальных производителя процессоров, а именно, AMD и Intel. Поэтому их и рассматривают, когда речь идет о выборе процессора.
Вот некоторые представители этих типов процессоров: Intel Celeron, Intel Core 2 Duo, AMD Athlon, Athlon 64 X2 и др. Все они отличаются интерфейсом, используемыми технологиями (алгоритмами, количеством ядер) и быстродействием.
Рынок предлагает очень большой выбор процессоров разной частоты, начиная с «младших» (более дешевых) моделей и заканчивая моделями высшей категории, содержащими несколько ядер.
Стоит также упомянуть о том, что создание процессоров идет по трем направлениям: процессоры для персональных компьютеров, процессоры для серверов и процессоры для переносных устройств (ноутбуков, КПК, PDA и др.). Процессоры третьего направления характеризуются уменьшенным потреблением энергии, что особенно важно для данного типа устройств.
Когда идет речь о сравнении быстродействия процессоров от этих производителей, то возникает множество спорных вопросов и еще больше неоднозначных ответов. Однако ясно одно: быстродействие процессора зависит от очень многих факторов, основными из которых являются шины обмена информацией, частота работы ядра, наличие расширений стандартных инструкций, тип и размер кэш-памяти, пропускная способность контроллера памяти, аппаратные технологии ядра и многое другое. С некоторыми из них вы сможете познакомиться далее.
Частота ядраЧастота ядра – показатель, влияющий на скорость выполнения команд процессором. Однако это совсем не означает, что это характеризует его быстродействие. Дело в том, что, в зависимости от конструкции ядра и наполнения его различными аппаратными блоками, ядро способно выполнять за один такт разное количество команд, поэтому часто бывает так, что процессоры с разной частотой имеют одинаковую производительность.
По умолчанию единицей одного такта считается 1 Гц. Это означает, что при частоте 1 ГГц ядро процессора выполняет 1 млрд тактов. Теоретически, если считать, что за один такт ядро выполняет одну операцию, скорость работы процессора составила бы 1 млрд операций в секунду. На практике же этот показатель вычислить достаточно трудно, поскольку на него влияют количество выполняемых операций за такт, сложность операции[7], пропускная способность шин кэш-памяти и оперативной памяти и т. д.
ШиныСлово «шина» следует понимать как некоторый канал с определенными характеристиками, через который процессор обменивается данными с остальными компонентами. Примером такого канала может быть канал, по которому идет обмен данными с кэш-памятью, контроллером памяти, видеокартой, жестким диском и т. д.
Главными характеристиками шины являются ее разрядность и частота работы. Так, чем выше ее разрядность и частота, тем больше данных проходит через шину за единицу времени, а значит, больше данных будет обработано процессором или другим компонентом. К примеру, если брать процессоры AMD, то они имеют несколько подобных шин (внешних и внутренних), которые работают на разных частотах и имеют разную разрядность. Это связано с технологическими особенностями, поскольку не все компоненты способны функционировать с частотой наиболее быстрой шины.
Именно здесь и кроется первая и самая главная ошибка многих пользователей, которые считают, что частота процессора является показателем его скорости работы. На самом же деле все упирается в пропускную способность шины. Например, если предположить, что за один такт ядра передается 64 бит, или 8 байт, информации (64-битный процессор) и частота шины составляет 100 МГц, то пропускная способность шины составит 8 байт Ґ 100 000 000 тактов, что равно примерно 763 Мбайт. В то же время частота ядра процессора может быть в несколько раз выше. Это, в свою очередь, означает, что при достижении этого показателя оставшийся запас скорости процессора элементарно простаивает.
С другой стороны, существуют шины, например, между процессором и кэш-памятью первого уровня, которые позволяют им наиболее эффективно обмениваться данными, что достигается за счет их работы на одной частоте.
РазрядностьРазрядность процессора определяет то количество информации, которое он может обработать за один такт. Чем выше будет его разрядность, тем больше информации он сможет обработать. Однако это совсем не означает, что скорость процессора от этого повышается. Главным образом разрядность влияет на объем адресуемых данных (а соответственно, и объем используемой оперативной памяти), хотя, конечно, может повышаться скорость выполнения целочисленных операций. Мало того, разрядность процессора тесно связана с разрядностью модулей оперативной памяти.
Однако стоит отметить тот факт, что разрядность процессора совсем не означает, что он работает именно с ней. На самом деле это просто говорит о том, что он может выполнять, к примеру, 64-битные команды. В то же время процессор спокойно может работать с разрядностью, например, 80 или 128 бит, когда дело касается операций с плавающей точкой.
На сегодняшний день используются 32– и 64-разрядные процессоры.
Кэш-памятьКак вы уже поняли, скорость работы процессора определяется скоростью работы всех его участков. Скорость работы этих участков зависит от их аппаратных возможностей и пропускных способностей соответствующих шин данных. Предвидя такую ситуацию, производители процессоров придумали и внедрили кэш-память с целью максимально ускорить работу их аппаратных блоков.
Главное отличие кэш-памяти от оперативной памяти компьютера – скорость работы. На практике скорость работы кэш-памяти в десятки раз выше скорости работы оперативной памяти, что связано с технологическим процессом их изготовления и условий функционирования.
Чтобы не заходить в теоретические дебри, достаточно будет сказать, что существует несколько типов кэш-памяти. Так, наиболее быстрой является кэш-память первого уровня, после нее по скорости идет кэш-память второго и третьего уровней. Обычно обязательными являются только первые две позиции, хотя ничто не мешает сделать кэш-память четвертого уровня и т. д. В любом случае эта память будет быстрее оперативной памяти.