Kniga-Online.club
» » » » Операционная система UNIX - Робачевский Андрей Михайлович

Операционная система UNIX - Робачевский Андрей Михайлович

Читать бесплатно Операционная система UNIX - Робачевский Андрей Михайлович. Жанр: Интернет год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

□ Трансляцию данных, передаваемых процессом с помощью системных вызовов, в сообщения и передачу их вниз по потоку.

□ Сообщение об ошибках и отправление сигналов процессам, связанным с потоком.

□ Распаковку сообщений, переданных вверх по потоку, и копирование данных в пространство ядра или задачи.

Процесс передает данные потоку с помощью системных вызовов write(2) и putmsg(2). Системный вызов write(2), представляющий собой унифицированный интерфейс передачи данных любым устройствам, позволяет производить передачу простых данных в виде потока байтов, не сохраняя границы логических записей. Системный вызов putmsg(2), предназначенный специально для работы с потоками, позволяет процессу за один вызов передать управляющее сообщение и данные. Головной модуль преобразует эту информацию в единое сообщение с сохранением границ записи.

Системный вызов putmsg(2) имеет вид:

#include <stropts.h>

int putmsg(int fildes, const struct strbuf *ctlptr,

 const struct strbuf* dataptr, int flags);

С помощью этого вызова головной модуль формирует сообщение, состоящее из управляющей части M_PROTO и данных, передаваемых в блоках M_DATA. Содержимое сообщения передается с помощью указателей на структуру strbuf — ctlptr для управляющего блока и dataptr для блоков данных.

Структура strbuf имеет следующий формат:

struct strbuf {

 int maxlen;

 int len;

 void *buf;

}

где maxlen не используется, len — размер передаваемых данных, buf — указатель на буфер.

С помощью аргумента flags процесс может передавать экстренные сообщения, установив флаг RS_HIPRI.

В обоих случаях головной модуль формирует сообщение и с помощью функции canput(9F) проверяет, способен ли следующий вниз по потоку модуль, обеспечивающий механизм управления передачей, принять его. Если canput(9F) возвращает истинный ответ, сообщение передается вниз по потоку с помощью функции putnext(9F), а управление возвращается процессу. Если canput(9F) возвращает ложный ответ, выполнение процесса блокируется, и он переходит в состояние сна, пока не рассосется образовавшийся затор. Заметим, что возврат системного вызова еще не гарантирует, что данные получены устройством. Возврат из write(2) или putmsg(2) свидетельствует лишь о том, что данные были успешно скопированы в адресное пространство ядра, и в виде сообщения направлены вниз по потоку.

Процесс может получить данные из потока с помощью системных вызовов read(2) и getmsg(2). Стандартный вызов read(2) позволяет получать только обычные данные без сохранения границ сообщений.[63] В отличие от этого вызова getmsg(2) позволяет получать данные сообщений типов M_DATA и M_PROTO, при этом сохраняются границы сообщений. Например, если полученное сообщение состоит из блока M_PROTO и нескольких блоков M_DATA, вызов getmsg(2) корректно разделит сообщение на две части: управляющую информацию и собственно данные.

Вызов getmsg(2) имеет вид:

#include <stropts.h>

int getmsg(int fildes, struct strbuf *ctlptr,

 struct strbuf *dataptr, int *flagsp);

С помощью вызова getmsg(2) прикладной процесс может получить сообщение, причем его управляющие и прикладные данные будут помещены в буферы, адресуемые ctlptr и dataptr соответственно. Так же как и в случае putmsg(2) эти указатели адресуют структуру strbuf, которая отличается только тем, что поле maxlen определяет максимальный размер буфера, a len устанавливается равным фактическому числу полученных байтов. По умолчанию getmsg(2) получает первое полученное сообщение, однако с помощью флага RS_HIPRI, установленного в переменной, адресуемой аргументом flagsp, процесс может потребовать получение только экстренных сообщений.

В обоих случаях, если данные находятся в головном модуле, ядро извлекает их из сообщения, копирует в адресное пространство процесса и возвращает управление последнему. Если же в головном модуле отсутствуют сообщения, ожидающие получения, выполнение процесса блокируется, и он переходит в состояние сна до прихода сообщения.

Когда головной модуль получает сообщение, ядро проверяет, ожидает ли его какой-либо процесс. Если такой процесс имеется, ядро пробуждает процесс, копирует данные в пространство задачи и производит возврат из системного вызова. Если ни один из процессов не ожидает получения сообщения, оно буферизуется в очереди чтения головного модуля.

Доступ к потоку

Как и для обычных драйверов устройств, рассмотренных ранее, прежде чем процесс сможет получить доступ к драйверу STREAMS, необходимо встроить драйвер в ядро системы и создать специальный файл устройства — файловый интерфейс доступа. Независимо от того, как именно осуществляется встраивание (статически с перекомпиляцией ядра, или динамически), для этого используются три структуры данных, определенных для любого драйвера или модуля STREAMS: module_info, qinit и streamtab. Связь между ними представлена на рис. 5.21.

Рис. 5.21. Конфигурационные данные драйвера (модуля) STREAMS

Структура streamtab используется ядром для доступа к точкам входа драйвера или модуля — к процедурам его очередей <i>xx</i>open(), <i>xx</i>close(), <i>xx</i>put() и <i>xx</i>service(). Для этого streamtab содержит два указателя на структуры qinit, соответственно, для обработки сообщений очереди чтения и записи. Два других указателя, также на структуры qinit, используются только для мультиплексоров для обработки команды I_LINK, используемой при конфигурации мультиплексированного потока. Каждая структура qinit определяет процедуры, необходимые для обработки сообщений вверх и вниз по потоку (очередей чтения и записи). Функции <i>xx</i>open() и <i>xx</i>close() являются общими для всего модуля и определены только для очереди чтения. Все очереди модуля имеют ассоциированную с ними процедуру <i>xx</i>put(), в то время как процедура <i>xx</i>service() определяется только для очередей, реализующих управление передачей. Каждая структура qinit также имеет указатель на структуру module_info, которая обычно определяется для всего модуля и хранит базовые значения таких параметров, как максимальный и минимальный размеры передаваемых пакетов данных (mi_maxpsz, mi_minpsz), значения ватерлиний (mi_hiwat, mi_lowait), а также идентификатор и имя драйвера (модуля) (mi_idnum, mi_idname).

Перейти на страницу:

Робачевский Андрей Михайлович читать все книги автора по порядку

Робачевский Андрей Михайлович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Операционная система UNIX отзывы

Отзывы читателей о книге Операционная система UNIX, автор: Робачевский Андрей Михайлович. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*