Эдвардс Деминг - Выход из кризиса. Новая парадигма управления людьми, системами и процессами
В состоянии хаоса можно было бы склониться к 100 %-ному контролю. В таком решении есть определенный смысл, однако мы рассмотрим альтернативную процедуру, предложенную Джойс Орсини).
Правила Джойс Орсини. В состоянии хаоса простой альтернативой 100 %-ному контролю выступают правила Джойс Орсини[100]. Эти правила легко использовать. Они значительно уменьшают средние полные затраты по сравнению со 100 %-ным контролем. Сопоставление со 100 %-ным контролем целесообразно, поскольку его средняя стоимость нам известна: это k1 + kp на изделие. Вот эти правила:
Для k2 ≥ 1000k1: Проводите 100 %-ный контроль входящих партий.
Для 1000k1 > k2 > 10k1: Испытайте выборку объемом n = 200. Принимайте оставшуюся часть партии, если в выборке нет дефектных изделий. Отбраковывайте оставшуюся часть, если в выборке обнаружено дефектное изделие.
Для k2 < 10k1: Никакого контроля.
Выборки объемом n = 200 обеспечат текущий учет качества входящей продукции. Удовлетворяющей целям формой текущего учета может стать карта числа обнаруженных в каждой выборке дефектных изделий. Для такой карты можно порекомендовать объединять несколько выборок, идущих подряд, чтобы иметь в каждой точке для среднего примерно от трех до четырех дефектных изделий. Текущие записи расскажут вам о колебаниях качества изо дня в день. Подобная информация будет полезна вам и вашему поставщику для идентификации его проблемы. Вы также поймете, действительно ли входящее качество находится в состоянии хаоса или вопреки ожиданиям может с небольшими потерями удовлетворять условию 1 или условию 2.
Конечно, на следующей неделе было бы возможно и даже легко улучшить результаты – в смысле критериев Джойс Орсини. Мы могли бы выяснить, каково было в прошлом распределение доли дефектных во входящих партиях. К сожалению, это малоинформативно, поскольку в состоянии хаоса не существует предсказуемого конкретного распределения. Если бы мы знали распределение входящих партий, мы не находились бы в состоянии хаоса.
Процедура, которую легко описать и которая приводит почти к минимуму средних полных затрат при любых обстоятельствах, – это последовательный план Френсиса Энскамби[101]. В случае если все предшествующие предположения не работают, Энскамби предлагает последовательно отбирать из партии выборки, первая из которых должна быть объемом
где N – это объем партии, а последующие выборки должны иметь объем n = k2/k1. Следует продолжать эту процедуру до тех пор, «пока либо полное число обнаруженных дефектных изделий не станет меньше числа проверенных выборок, либо вся партия не будет проверена».
К сожалению, правило Энскамби довольно трудноприменимо на практике.
Изложенную выше теорию и предложенные правила можно было применить при ремонте и замене деталей у потребителя (или в ремонтных мастерских), если бы мы знали величину затрат. Единственная трудность состоит в том, что, когда ваш продукт достиг потребителя, непосредственная стоимость ремонта и замены – это лишь малая часть стоимости дефекта. Потеря бизнеса в будущем из-за неудовлетворенного потребителя или из-за потенциального потребителя, узнавшего о случившемся, может быть огромна, и, к несчастью, ее невозможно оценить.
Потребность в простоте использования. Любое правило должно быть простым в применении. Полные затраты должны учитывать затруднения, связанные с практическим применением правил, и значительные потери, сопутствующие любому плану, для реализации которого хотя бы время от времени требуется участие специалиста в области статистики. Правила Джойс Орсини в этом отношении одни из самых простых.
Неудобства, связанные с переменной рабочей нагрузкой. Все правила, в которых проверка оставшейся части изделий связана с результатами контроля выборки, независимо от цели применения имеют общий недостаток. Все они порождают неудобства из-за переменной рабочей нагрузки в процессе контроля. Более того, и так уже испытывающий огромную нагрузку производственный менеджер получает дополнительную головную боль – нестабильный ритм получения входящих деталей. Он может требовать и получать детали независимо от того, проводился контроль или нет, есть ли дефектные изделия или нет, и это может разрушать составленные планы контроля. Исключение возможно, лишь когда число поступающих изделий столь велико и уровень качества столь низок, что команда контролеров большую часть времени занята проверкой выборок и остающихся частей партий.
Никогда не оставаться без информации. Правило отсутствия контроля не означает езды в темноте с выключенными фарами. Следует просматривать все входящие материалы (возможно, с пропуском некоторых партий) с целью получения информации и сравнения фактической поставки с отгрузочными накладными поставщика, контроля проведенных им испытаний и прилагаемых контрольных карт. Если имеются два поставщика, ведите записи отдельно для каждого.
Следующий совет (уже предлагавшийся в пункте 4 главы 2) – перейти для каждого изделия к одному поставщику на основе долговременных взаимоотношений и работать с ним над совершенствованием входящего качества.
Ошибки и их исправление в сервисных организациях. Изложенная выше теория применима к работе банка, универмага, любой компании, допускающей ошибки в платежных ведомостях, и к большинству других ситуаций (см. пример 3). Поток работы переходит с этапа на этап, конечный пункт – счет потребителя, или цифры на чеке, или отчет. Работа может пройти через несколько этапов, прежде чем ошибка будет обнаружена. К этому моменту стоимость исправления может стать в 20, 50 или 100 раз больше стоимости ее обнаружения и исправления в месте возникновения. В рассмотренном ниже примере 3, представленном мистером У. Лацко из Irving Trust Company, k2 в 2000 раз больше k1.
Разрушающие испытания. Предшествующая теория основана на испытаниях без разрушения опытного образца. Некоторые испытания связаны с разрушением, они разрушают контролируемую выборку. Пример – долговечность лампочки, число тепловых калорий при сгорании кубического фута газа, или время работы плавкого предохранителя, или проверка содержания шерсти в куске ткани. Отбраковка всей партии не имела бы смысла, поскольку передавать в производство было бы нечего.
Очевидно, что для разрушающих испытаний единственное решение – достижение состояния статистической управляемости в производстве деталей, чтобы сразу делать их правильно. Это решение – наилучшее как для разрушающих, так и для неразрушающих испытаний.
Примеры применения правила «все или ничего»
Пример 1. Производитель телевизоров проводил контроль каждой входящей микросхемы.
Вопрос: Сколько дефектных микросхем вы обнаруживаете?
Ответ: Очень мало. (Он взглянул на цифры за последние несколько недель.) В среднем одна или две дефектные микросхемы на десять тысяч испытанных.
Таким образом, мы имеем
Дальнейшие вопросы позволили получить информацию о том, что стоимость первоначального контроля k1 равна 30 центам и что каждая плата с микросхемами проверяется по ходу процесса после того, как к ней добавляется значительное количество ценности. В этой точке замена дефектной микросхемы причиняет ущерб
k2 = 100k1.Таким образом,
В соответствии с этим не следовало проводить контроль микросхем. Производство удовлетворяет условию 1, но производитель действует в соответствии с процедурой условия 2. Другими словами, он максимизирует свои полные затраты. При его плане средние полные затраты на одну интегральную схему составят
k1 + kp,тогда как при отсутствии контроля поступающих микросхем средние затраты равнялись бы
p (k2 + k).Разница составляет
Потери = {k1 + kp} – {p (k2 + k)} = k1 – pk2 = 29,6 центана каждую микросхему. В телевизоре от 60 до 80 микросхем. При 60 микросхемах потери из-за неправильного выбора плана составили бы 60 × 29,6 цента = 1776 центов, почти 10 % себестоимости – это пример потерь, встроенных в продукцию.
Отвечающий за качество инженер сначала объяснил мне, что ему не нужен статистический контроль качества, поскольку проверке подвергается 100 % продукции. По его словам, он применяет 100 %-ный контроль микросхем, потому что его поставщик не имеет оборудования для проведения испытаний при требуемых условиях. Тем не менее изготовитель микросхем, как мне кажется, отлично справляется со своей работой, которая столь хороша, что p = 0,00015.