Kniga-Online.club

Владимир Дараган - Игра на бирже

Читать бесплатно Владимир Дараган - Игра на бирже. Жанр: О бизнесе популярно издательство УРСС, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Так, может быть, книгу на этом и завершить? Вы уже знаете, что такое акции и биржа, как выбрать брокера и как покупать акции. Остается только приобрести лук со стрелами, развесить на стене страницы The Wall Street Journal, завязать глаза и начать стрельбу: стрелы укажут компании, акции которых надо купить. Поскольку рынок в среднем растет, подождав несколько лет, вы скорее всего получите прибыль. Как ни странно, такой метод имеет право на существование, и после такой стрельбы вы можете заработать неплохие деньги.

Однако не надо забывать, что хотя цены акций в среднем растут, но акции каждой отдельной компании вполне могут и падать. Существуют сотни примеров, когда акции, стоившие десятки долларов, падали до нескольких центов. Если просмотреть графики зависимости цен акций различных компаний от времени, то может сложиться впечатление, что на коротком промежутке времени (месяцы или год) движение цен совершенно случайно. Что произойдет с акциями завтра, не зависит от того, что было с ними сегодня, вчера и т.д. Вероятности падения или роста цены на следующий день представляются практически равными. Если это так, то поведение цены акций — это случайный процесс, и игра на бирже мало отличается от игры в казино: полный хаос и все решает случай. К тому же, покупая акции, вы платите комиссионные брокеру и дополнительно теряете деньги на разнице цен покупки и продажи. В таком случае, даже если вероятность выигрыша и проигрыша одинакова, то в среднем вы проиграете за счет указанных затрат.

А может быть, можно получить прибыль и из хаоса, даже если цены акций ведут себя абсолютно случайным образом? Для подобных процессов разработаны специальные методы, и соответствующий раздел математики называется теорией случайных блужданий, в рамках которой динамика цены акций рассматривается как случайное блуждание точки по оси цен. Эта теория получила широкое распространение среди теоретиков биржи в 50-х годах, когда расчеты на первых компьютерах показали ее соответствие поведению рынка акций. Последующее, более глубокое изучение биржевых процессов выявило ее недостаточность, но об этом мы расскажем позже. Пока же ознакомимся с методами этой теории, которые до сих пор используются аналитиками. Для этого попробуем придумать стратегию биржевой игры, дающую прибыль при условии, что цена выбранных акций подчиняется законам случайных блужданий, т.е. вероятности роста или падения цены равны и не зависят от прошлого поведения акций. Будем рассматривать только изменение цен акций, пренебрегая брокерскими комиссионными и другими затратами.

Простейшая стратегия — это купить акции и, если они вырастут в цене на L долларов, — продать. Если изменение цены случайно, то рано или поздно цена коснется установленного вами предела и вы получите прибыль. В теории случайных блужданий есть теорема, что если объект (в нашем случае цена акций) начинает случайные блуждания по оси х из точки X0, to какую бы точку X мы ни выбрали, рано или поздно объект попадет в точку X с вероятностью, равной единице. В случае игры на бирже X0 — цена акций при покупке, X — цена акций при продаже и разница

L = X - Хо

будет вашей прибылью. Иными словами, надо купить акции и ждать, пока образуется прибыль. К сожалению, как будет показано, средняя прибыль от такой игры равна нулю, т.е. эта стратегия неперспективна. В ней, помимо практической невозможности ожидать желаемого бесконечно долго, есть еще и теоретическая тонкость: если цена акций упадет до нуля, то это означает банкротство компании, и процесс ожидания прибыли прервется. Российские инвесторы (да и не только российские) хорошо представляют такую ситуацию. Иными словами, цена акций может блуждать между нулем и числом X. Как только цена коснется одной из этих границ, процесс блуждания окончится, и можно начать подсчет прибылей или убытков. Возможную прибыль мы обозначим буквой L, а возможные убытки обозначим буквой S. В рассматриваемом случае S = Х0, т. е. возможные потери равны первоначальной стоимости акции. Чтобы лучше представить такой метод игры на бирже, мы приведем рисунок, где указаны наши обозначения.

Предположим, что цена акций меняется каждый день, вырастая или падая на один доллар с равной вероятностью. В этом случае, можно доказать, что вероятность касания точки X раньше, чем точки 0, т.е. вероятность получения прибыли, равна

P(L) = S/(S + L),

а вероятность касания точки 0 раньше, чем точки X, т.е. вероятность проигрыша, равна

P(S) = L/(S + L).

Средняя прибыль G (в долларах) при таком описании биржевой игры и такой стратегии будет равна вероятности выигрыша, умноженной на величину выигрыша, за вычетом произведения величины проигрыша на вероятность проигрыша. Математически это можно записать в виде

G = LP(L) - SP(S),

а подставив значения P(L) и P(S), получим G = 0. Как видите, средняя прибыль от такой игры действительно равна нулю. Часть ваших акций коснется точки X, и вы получите прибыль, а часть акций погибнет, и у вас будут потери. (Если вы инвестируете все свои средства в акции одной компании, то P(S) — вероятность полной потери капитала.) Конечно, в зависимости от величин S и L реальные результаты игры за ограниченные промежутки времени будут разными. Чем меньше ваш начальный капитал (это величина, сопоставимая с S или Х0) и чем больше вы хотите заработать, тем больше вероятность вашего полного разорения. С другой стороны, если ваш капитал велик, а цель достаточно скромна, то ваш шанс на выигрыш вполне реален. Это простейший пример, показывающий, что меньшая прибыль всегда связана с меньшим риском. Однако надо помнить, что при длительном использовании такой стратегии в любом случае рано или поздно можно потерять все, так как вероятность проигрыша P(S) отлична от нуля.

Таким образом, здесь нужно долго ждать, и всегда есть вероятность проиграть все инвестированные деньги. Естественно, вам такая стратегия не понравилась, хотя многие новички, сами того не подозревая, пользуются именно ею. Инициативный читатель, наверное, уже готов предложить другую, более продуктивную стратегию, и мы попробуем рассмотреть иные варианты.

Действительно, совершенно бесспорны две посылки: нельзя допускать потерю всех денег, даже с маленькой вероятностью такого события, и нельзя ограничивать себя выигрышем небольшой суммы. Стратегия, объединяющая оба эти требования, выглядит следующим образом. Вы покупаете акции по цене Хо. Если цена падает на величину S, то вы продаете акции с потерей S долларов. Если цена увеличивается, вы не продаете акции сразу, а ждете, когда они вырастут более значительно. Ваша возможная прибыль L может быть очень большой (например, вы будете ждать пока цена акций удвоится). Графически схема такой стратегии выглядит следующим образом.

Перейти на страницу:

Владимир Дараган читать все книги автора по порядку

Владимир Дараган - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Игра на бирже отзывы

Отзывы читателей о книге Игра на бирже, автор: Владимир Дараган. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*