Нассим Талеб - Черный лебедь. Под знаком непредсказуемости
Можно с толком использовать гауссов метод для упорядочения тех величин, которые по объективным причинам не слишком сильно удаляются от средних значений. Если переменные находятся в зоне действия закона гравитации или имеются физические ограничения, препятствующие чрезмерной дифференциации размеров, значит, мы попали в Среднестан. Если сила равновесия настолько велика, что малейшая разбалансировка мгновенно ликвидируется, то опять-таки гауссов метод вполне приемлем. В противном случае грош ему цена. Вот почему экономика в общем-то зиждется на понятии равновесия: оно помимо всего прочего устраивает экономистов тем, что позволяет втискивать экономические явления в гауссовы рамки.
Заметьте, я не утверждаю, что среднестанский тип случайности не допускает никаких крайностей. Но они настолько редки, что в конечном итоге роль их очень невелика. Эффект
таких крайностей ничтожно мал и уменьшается с увеличением общей совокупности.
Теперь немного конкретики: если у вас имеется набор великанов и карликов, а иначе говоря, наблюдения, различающиеся на несколько порядков величины, вы можете все-таки оставаться на территории Среднестана. Почему? Сейчас выясним. Предположим, что у вас есть выборка в тысячу человек, с широким диапазоном от карлика до великана. Скорее всего, в этой выборке встретится много великанов, а не только какой-то один, случайный. Неожиданно возникший лишний великан не изменит среднего показателя, потому что заранее предполагается, что великанов несколько и ваш средний показатель, скорее всего, и так достаточно высок. Другими словами, наибольший экземпляр не может сильно возвышаться над средним. Средний показатель всегда учитывает наличие как великанов, так и карликов, поэтому никто из них не попадет в разряд редкостных исключений — если только не народится вдруг какой-нибудь уникальный мегавеликан или микрокарлик. Это будет Среднестан с большой амплитудой разброса.
Снова отметим следующую закономерность: чем реже событие, тем менее точно мы можем оценить степень его вероятности — даже в рамках гауссианы.
Позвольте вам продемонстрировать, как "гауссова кривая" вытесняет из жизни случайность — потому она так и популярна. Мы любим ее за то, что она дает определенность! Каким образом? За счет усреднения, о чем сейчас и пойдет разговор.
Почему нам удается спокойно пить кофе
Вспомним кое-что из обсуждения Среднестана в главе 3: ни одно отдельное наблюдение не влияет на итог. И это свойство будет приобретать все большую и большую значимость
по мере увеличения рассматриваемой вами совокупности. Средние показатели будут все больше и больше стабилизироваться, пока в конце концов самые разные выборки не станут похожими как две капли воды.
За свою жизнь я выпил множество чашек кофе (это моя главная слабость). Но никогда не видел, чтобы чашка подпрыгнула на два фута и кофе не проливался на эту рукопись без внешнего вмешательства (даже в России). В самом деле, чтобы стать свидетелем такого события, недостаточно невинного пристрастия к кофе; потребуется больше жизней, чем, пожалуй, можно вообразить, — шансы равны единице после такого количества нолей, что я не смогу их выписать, даже если употреблю на это все свое свободное время.
Но законы физики свидетельствуют, что чашка все же могла бы подпрыгнуть, — это очень маловероятно, но возможно. Частицы постоянно куда-нибудь прыгают. Как получилось, что кофейная чашка, сама состоящая из прыгающих частиц, не прыгает? Причина, говоря попросту, вот в чем: чтобы чашка подпрыгнула, нужно, чтобы все частицы прыгнули в одну и ту же сторону и сделали бы это вместе несколько раз подряд (при компенсирующем движении стола в обратную сторону). Все несколько триллионов частиц в моей кофейной чашке не прыгнут в одну и ту же сторону; этого не случится, сколько бы ни просуществовала еще наша Вселенная. Поэтому я могу спокойно поставить кофейную чашку на край письменного стола и призадуматься о более серьезных зонах неопределенности.
Спокойствие, гарантированное моей кофейной чашке, иллюстрирует то, как гауссова случайность "укрощается" усреднением. Если бы моя чашка была одной большой частицей и вела себя так, как обычно ведет себя отдельная частица,
то ее прыжки доставляли бы массу неприятностей. Но моя чашка — это триллионы очень маленьких частиц.
Хозяева казино прекрасно это понимают, и поэтому они никогда (если всё правильно делают) не теряют денег. Они просто не позволяют одному игроку сделать крупную ставку, вместо этого предпочитая, чтобы множество игроков сделали ряд ставок ограниченного размера. Игроки могут в сумме поставить 20 миллионов долларов, но не надо беспокоиться о благополучии казино: ставки равны в среднем 20 долларам; казино ограничивает ставки тем максимумом, который позволяет хозяевам казино спокойно спать по ночам. Поэтому колебания доходов казино будут смехотворно малы, независимо от активности всех имеющихся в наличии игроков. Никто из них никогда не выйдет из казино с миллиардом долларов.
Вышеизложенное представляет собой проявление высшего закона Среднестана: когда игроков множество, отдельный игрок практически не повлияет на итог, кроме как по мелочи.
Отсюда следует то, что колебания вокруг среднего в гаус-сиане, также называемые "ошибками", на самом деле — не повод для волнений. Они маленькие, их можно легко отбросить. Они — одомашненные флуктуации вокруг среднего.
Любовь к определенности
Если когда-то в колледже вам довелось прослушать (скучнейший) курс лекций по статистике и вы не поняли почти ничего из того, чем так восторгался профессор, если вы так и не уяснили, что такое стандартное отклонение, не расстраивайтесь. Понятие стандартного отклонения бессмысленно вне Среднестана. Ясно, что гораздо полезней и куда приятней было бы прослушать курс по биологическим аспектам эстетики или постколониальному африканскому танцу, и это проверяется эмпирически.
Стандартные отклонения не существуют вне гауссианы, а если и существуют, то они не важны и мало что объясняют. Но дальше — хуже. Гауссово семейство (которое включает различных друзей и родственников, скажем, закон Пуассона) — единственный класс распределений, для описания которого достаточно стандартного отклонения (и среднего показателя). Больше ничего не нужно. "Гауссова кривая" — находка для любителей упрощений.
Есть другие понятия, которые почти ничего не значат вне гауссовой ситуации — корреляция и, хуже того, регрессия. Но они глубоко внедрились в наши методы; в любом деловом разговоре непременно услышишь слово корреляция.