Экспонента. Как быстрое развитие технологий меняет бизнес, политику и общество - Азим Ажар
Ускоряющийся рост цифровых технологий не ограничивается США. KakaoTalk — ведущая корейская социальная сеть, эквивалент WeChat или WhatsApp. В январе 2016 года компания решила создать банк. За две недели два миллиона корейцев — около 4% населения страны — открыли в нем счета. К лету 2019 года это сделали более 20% корейцев[32]. Стоит нам разобраться в одном быстро развивающемся продукте экспоненциального века, как уже появляется другой. Возьмите TikTok, социальную сеть для забавных видео. За несколько месяцев она прошла путь от никому не известного сервиса до самого скачиваемого приложения в мире. С этим ростом пришел беспрецедентный поток продаж. ByteDance, материнская компания TikTok, в 2018 году сообщала о продажах на сумму семь миллиардов долларов, а два года спустя ее доходы увеличились более чем в пять раз[33]. Сравните: за пять лет до этого Facebook перешел тот же рубеж в семь миллиардов долларов, но за следующие два года его доходы выросли лишь в три раза. Настоящая эпидемия ускорения.
Таково истинное наследие закона Мура. Аппаратное обеспечение цифровых технологий постоянно наращивает мощности, и с тем же постоянством снижается его цена. Поскольку чипы развиваются с экспоненциальной скоростью, возрастая на 50% и более в год в течение многих лет, они за пустяковые деньги предоставляют доступ к невообразимой вычислительной мощности. Эта гипердефляция создает все более широкие возможности — новые продукты, которые, в свою очередь, могут распространяться в нашей экономике все быстрее. Весь этот процесс представляет собой постоянное ускорение.
* * *К началу XXI века некоторые специалисты начали обращать внимание на замедление действия закона Мура. Удивляться этому не стоит. Технологии не могут бесконечно развиваться экспоненциально. Сегодняшние автомобили ездят ненамного быстрее, чем в конце Второй мировой войны. Современные пассажирские самолеты летают со скоростью примерно 500 миль в час — немногим более, чем 468 миль в час, которые выдавали первые пассажирские реактивные самолеты в 1950-х годах.
Есть веские основания полагать, что наш нынешний подход к проектированию микросхем близок к границам возможного. Ученые придумывают все более сложные процессы, чтобы соответствовать предсказаниям Мура. Поскольку транзисторы становятся все меньше, для их создания требуется все более точное оборудование: сегодняшние фабрики по производству полупроводников используют невероятно сложную лазерную технологию, а самые современные лазеры стоят по сто миллионов долларов и более. При этом любое, даже крошечное, изменение атмосферных условий на фабриках представляет смертельную угрозу для микроскопических транзисторов: испортить кремниевые пластины может одна пылинка. По этой причине сегодня помещения, в которых производятся чипы, — самые неподвижные в мире: они покоятся на огромном количестве амортизаторов. Они также и самые чистые. Воздух в этих помещениях, площадь которых иногда достигает почти двадцать тысяч квадратных метров, часто фильтруется около шестисот раз в час. (Для сравнения: в больничной операционной воздух необходимо очищать всего лишь пятнадцать раз в час.)
Именно это мы и имеем в виду, когда говорим, что закон Мура — это социальный факт, а не жесткое правило: полупроводниковая промышленность была чрезвычайно заинтересована в том, чтобы ему соответствовать. По оценкам некоторых экономистов, объем исследований, направленных на поддержание закона Мура, с 1971 по 2018 год увеличился в восемнадцать раз. Стоимость строительства полупроводниковых фабрик росла примерно на 13% в год — самые современные стоят пятнадцать миллиардов долларов и более[34].
Несмотря на все усилия, в конце 2010-х годов рост числа транзисторов на единицу площади начал замедляться. Подобно притиснутым друг к другу и изнывающим от пота пассажирам в жаркий день, эти микроскопические схемы стали раздражать друг друга. Каждый миниатюрный транзистор выделяет тепло, которое может воздействовать на соседние схемы и ухудшать их надежность, и с этой проблемой инженерам все сложнее бороться. Более того, современные транзисторы настолько малы — всего несколько атомов в ширину, — что вскоре на них могут начать действовать причудливые законы квантовой физики. При таких масштабах частицы настолько малы, что ведут себя как волны, то есть способны проходить через физические барьеры и проникать туда, где им не место. Закон Мура перестает выполняться из-за квантовых эффектов, влияющих на электроны.
Однако это не означает, что рост компьютерной мощности замедлится. Компьютерная революция не демонстрирует никаких признаков замедления. Рэй Курцвейл, один из ведущих мировых аналитиков технологий, выдвигает теорию технологического развития, которая пытается объяснить почему. Он считает, что технологии имеют тенденцию развиваться ускоренными темпами — в соответствии с тем, что он называет законом ускоряющейся отдачи. В основе модели Курцвейла лежит положительная обратная связь. Хорошие компьютерные чипы позволяют нам обрабатывать больше данных, что помогает нам узнать, как делать компьютерные чипы лучше. После чего мы можем использовать эти новые чипы, чтобы создавать еще лучшие чипы, и так далее. По Курцвейлу, этот процесс постоянно ускоряется: отдача от каждого нового поколения технологий наслаивается на отдачу предыдущего, и они даже подпитывают друг друга[35].
Однако важнейшая часть теории Курцвейла не относится к какой-либо определенной технологии вроде автомобиля или микрочипа. Он сосредоточивается на взаимодействии различных технологий. Главная идея Курцвейла состоит в том, что экспоненциальное развитие технологий — это не продвижение отдельных изобретений или даже отдельных секторов экономики. На самом деле иллюзия непрерывного экспоненциального технологического развития обусловлена десятками соединенных в ряд развивающихся различных технологий, которые постоянно взаимодействуют.
Вспомните S-образные кривые в данных Хораса Дедью. Когда технология только создается, ее развитие и распространение идет по пологому градиенту. Это говорит о медленном, но значимом прогрессе. Однако в какой-то момент развитие технологии набирает темп. Происходит быстрый рост, пока на определенном этапе прогресс не сходит на нет. Наш прежде почти вертикальный график становится горизонтальным.
Однако, по мнению Курцвейла, в любой момент времени S-образной кривой следует множество технологий. Когда одна S-кривая достигает своего наивысшего градиента, стартует другая кривая. Как только наша первая кривая начинает приближаться к горизонтали, более молодая технология подходит к взрывной фазе своего