Джей Форрестер - Основы кибернетики предприятия
3. 1. Классификация моделей
Модели можно классифицировать по-разному. Вариант группировки моделей, представляющий интерес для нашего исследования, приведен на рис. 3–1.
Рис. 3–1. Классификация моделей.Материальные или абстрактные. Прежде всего можно выделить модели материальные и абстрактные.
Материальные модели наиболее доступны для понимания. Обычно это копии исследуемых предметов, часто — уменьшенные.
Статические материальные модели, например архитектурные, помогают наглядно представить размещение элементов на плоскости и пространственные соотношения. Примером динамических материальных моделей служит аэродинамическая труба, применяемая для изучения аэродинамических характеристик проектируемых летательных аппаратов.
Абстрактные модели состоят не из материальных элементов, а из символов, и применяются они гораздо чаще, чем материальные, но они не всегда считаются моделями. Используемая символика может иметь форму письменной речи или мыслительного процесса С помощью мысленного представления или словесного описания может быть построена модель фирмы и ее деятельности.
Хозяйственные руководители постоянно имеют дело с такими мысленными и словесными моделями фирмы. (Это мысленное представление о фирме, и оно не обязательно точное.)
Модели призваны заменить в нашем представлении реальную систему.
Математическая модель является особой разновидностью абстрактных моделей. Она выражается языком математических символов и, как другие абстрактные модели, является описанием представляемой системы. Математические модели широко применяются, но воспринимаются они труднее, чем материальные, и не столь часто встречаются в повседневной практике, как словесные модели.
Уравнения, описывающие напряжения в конструкции, представляют собой статическую математическую модель балок и опор. Уравнения движения планет вокруг солнца являются динамической математической моделью солнечной системы.
Математическая модель представляет собой более четкое описание, чем большинство словесных моделей. При построении математических моделей мы начинаем со словесных и уточняем их до тех пор, пока нам не удастся перевести их на язык математики. Сам по себе перевод не труден. При переходе от словесных утверждений к математическим трудности возникают в том случае, когда исходная словесная модель является неточным описанием и ее недостатки обнаруживаются при попытке преобразования в математическую форму.
Преимущество математической модели в сравнении со словесной или материальной заключается в том, что с ней легче оперировать, ее логическая структура более определенна, на ее основе легче проследить путь от предположений до вытекающих из них следствий.
Статические или динамические. Модели могут отражать ситуации, меняющиеся или не меняющиеся во времени. Статическая модель описывает взаимосвязи, не подверженные изменениям. В динамической модели рассматриваются отношения, изменяющиеся во времени.
Линейные или нелинейные. Системы, отображаемые в моделях, могут быть линейными и нелинейными; соответственно классифицируются и модели.
В линейной системе внешние воздействия просто суммируются[13]. При линейной трактовке предприятия удвоение числа поступающих заказов вызвало бы в любой последующий момент времени в десять раз большие изменения, чем увеличение объема заказов на 10 %. В такой модели предприятия не учитываются ограничения производственной мощности; производительность труда не должна снижаться даже в том случае, если возникнет избыток рабочей силы по сравнению с наличным оборудованием, а осуществление крупных изменений мощности предприятия требует не больше времени, чем незначительные изменения такого рода. Рабочая сила, оборудование и материалы — каждый из этих элементов оказывал бы свое влияние на производство совершенно независимо от состояния двух других; в частности, наличия двух элементов — рабочей силы и оборудования — было бы достаточно для выпуска продукции даже при полном отсутствии материалов. Линейные модели приемлемы во многих работах в области физики, но они не в состоянии отразить существенные характеристики промышленных и социальных процессов.
При помощи линейных моделей гораздо проще достигнуть конкретного математического решения, чем при помощи нелинейных. За незначительным исключением математический анализ не дает общих решений для нелинейных систем. Поэтому когда для приближенного отражения нелинейных по существу явлений используются линейные модели, то нелинейные характеристики этих явлений утрачиваются.
Как только мы отказываемся от попытки найти общее решение, которое описывало бы в едином комплексе все возможные характеристики поведения системы, сразу же исчезает различие в сложности исследования линейных и нелинейных систем. Методы моделирования, дающие частное решение для каждой отдельной совокупности условий, одинаково применимы для анализа как линейных, так и нелинейных систем.
Устойчивые и неустойчивые. Динамические модели, в которых условия меняются во времени, могут быть разделены на устойчивые и неустойчивые, точно так же, как и реальные системы, которые они отражают, можно охарактеризовать как устойчивые или неустойчивые.
Устойчивой является такая система, которая, будучи выведена из своего исходного состояния, стремится вернуться к нему. Она может колебаться некоторое время около исходной точки, подобно обычному маятнику, приведенному в движение, но возмущения в ней со временем затухают и исчезают.
В неустойчивой системе, находящейся первоначально в состоянии покоя, возникшее возмущение усиливается, вызывая увеличение значений соответствующих переменных или их колебания с возрастающей амплитудой. В нелинейной системе, которая при обычных условиях неустойчива, могут возникнуть колебания, возрастающие до тех пор, пока их не ограничит появление нелинейных по форме воздействий (недостаток рабочей силы, производственной мощности или же материальных ресурсов). Продолжающиеся колебания в этих условиях можно рассматривать как достигшие устойчивой амплитуды изменений от максимума до некоторого минимума. Очевидно, что в экономических системах максимальные уровни деловой активности ограничены ресурсами, а минимальные — нулевым ее значением.
Есть основания полагать, что производственно-сбытовые и экономические системы, представляющие для нас наибольший интерес, часто относятся к тому типу, в котором, как в неустойчивых системах, малые возмущения усиливаются до тех пор, пока не натолкнутся на нелинейные (по форме) ограничивающие факторы.