Нина Коник - Общая теория статистики: конспект лекции
Непосредственная группировка данных статистического наблюдения – это первичная группировка. Вторичная группировка – это перегруппировка ранее сгруппированных данных. Необходимость вторичной группировки возникает в двух случаях:
1) если ранее произведенная группировка не удовлетворяет целям исследования в отношении числа групп;
2) для сравнения данных, относящихся к различным периодам времени или к различным территориям, если первичная группировка была произведена по разным группировочным признакам или по разным интервалам. Существует два способа вторичной группировки:
1) объединение мелких групп в более крупные;
2) выделение определенной доли единиц совокупности.
В научно обоснованной группировке общественных явлений необходимо учитывать взаимозависимость явлений и возможность перехода постепенных количественных изменений в явлениях к коренным качественным изменениям. Группировка может быть научной лишь в том случае, если не только определены познавательные цели группировки, но и правильно выбрано основание группировки – группировочный признак. Если группировка – это распределение на однородные группы по какому-либо признаку, объединение отдельных единиц совокупности в группы, однородные по какому-либо признаку, то группировочный признак – это признак, по которому происходит объединение отдельных единиц совокупности в отдельные группы.
При выборе группировочного признака важным является не способ выражения признака, а его значение для изучаемого явления. С этой точки зрения для группировки следует брать существенные признаки, выражающие наиболее характерные черты изучаемого явления.
Самая простая группировка – ряд распределения. Рядами распределения называются ряды чисел (цифр), характеризующие состав или структуру какого-либо явления после группировки статистических данных об этом явлении. Ряд распределения – это группировка, в которой для характеристики групп применяется один показатель – численность группы, т. е. это ряд чисел, показывающий, как распределяются единицы совокупности по изучаемому признаку.
Ряды, построенные по атрибутивному признаку, называют атрибутивными рядами. Приведенный ряд распределения содержит три элемента: разновидности атрибутивного признака (мужчины, женщины); численности единиц в каждой группе, называемые частотами ряда распределения; численности групп, выраженные в долях (процентах) от общей численности единиц, называемые частостями. Сумма частостей равна 1, если они выражены в долях единицы, и 100%, если они выражены в процентах.
Ряды распределения, построенные по количественному признаку, называются вариационными рядами. Числовые значения количественного признака в вариационном ряду распределения называются вариантами и располагаются в определенной последовательности. Варианты могут выражаться числами положительными и отрицательными, абсолютными и относительными. Вариационные ряды делятся на дискретные и интервальные.
Дискретные вариационные ряды характеризуют распределение единиц совокупности по дискретному (прерывному) признаку, т. е. принимающему целые значения. При построении ряда распределения с дискретной вариацией признака все варианты выписываются в порядке возрастания их величины, подсчитыва-ется, сколько раз повторяется одна и та же величина варианта, т. е. частота, и записывается в одной строке с соответствующим значением варианта (например, распределение семей по числу детей). Частоты в дискретном вариационном ряду, как и в атрибутивном, могут быть заменены частостями.
В случае непрерывной вариации величина признака может принимать любые значения в определенном интервале, например распределение работников фирмы по уровню дохода.
При построении интервального вариационного ряда необходимо выбрать оптимальное число групп (интервалов признака) и установить длину интервала. Оптимальное число групп выбирается так, чтобы отразить многообразие значений признака в совокупности. Чаще всего число групп устанавливается по формуле:
k = 1 + 3,32lgN = 1,441lgN + 1
где k – число групп;
N – численность совокупности.
Например, предположим, что необходимо построить вариационный ряд сельскохозяйственных предприятий по урожайности зерновых культур. Число сельскохозяйственных предприятий 143. Как определить число групп?
k = 1 + 3,321lgN = 1 + 3,321lg143 = 8,16
Число групп может быть только целым числом, в данном случае – 8 или 9.
Если полученная группировка не удовлетворяет требованиям анализа, то можно произвести перегруппировку. Не следует стремиться к очень большому количеству групп, так как в такой группировке нередко исчезают различия между группами. Также надо избегать образования и слишком малочисленных групп, включающих несколько единиц совокупности, потому что в таких группах перестает действовать закон больших чисел и возможно проявление случайности. Когда не удается сразу наметить возможные группы, собранный материал сначала разбивают на значительное количество групп, а затем укрупняют их, уменьшая количество групп и создавая качественно однородные группы.
Таким образом, во всех случаях группировки должны быть построены так, чтобы образованные в них группы как можно полнее отвечали действительности, были бы видны различия между группами и не объединялись бы в одну группу существенно различающиеся между собой явления.
3. Статистические таблицы
После того как данные статистического наблюдения собраны и даже сгруппированы, их трудно воспринимать и анализировать без определенной, наглядной систематизации. Результаты статистических сводок и группировок получают оформление в виде статистических таблиц.
Статистическая таблица – таблица, которая дает количественную характеристику статистической совокупности и представляет собой форму наглядного изложения полученных в результате статистической сводки и группировки числовых (цифровых) данных. По внешнему виду она представляет собой комбинацию вертикальных и горизонтальных строк. В ней обязательно должны быть общие боковые и верхние заголовки. Еще одной особенностью статистической таблицы является наличие в ней подлежащего (характеристика статистической совокупности) и сказуемого (показателя, характеризующего совокупности). Статистические таблицы являются формой наиболее рационального изложения результатов сводки или группировки.
Подлежащее таблицы представляет ту статистическую совокупность, о которой идет речь в таблице, т. е. перечень отдельных или всех единиц совокупности либо их групп. Чаще всего подлежащее помещается в левой части таблицы и содержит перечень строк.