Kniga-Online.club
» » » » Чарльз Уилан - Голая статистика. Самая интересная книга о самой скучной науке

Чарльз Уилан - Голая статистика. Самая интересная книга о самой скучной науке

Читать бесплатно Чарльз Уилан - Голая статистика. Самая интересная книга о самой скучной науке. Жанр: Бизнес издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Плюс состоит в том, что описательные статистики дают нам некое обобщенное и осмысленное представление исходного явления. О чем, собственно, и идет речь в этой главе. Минус же в том, что любое упрощение порождает манипулирование. Описательные статистики можно сравнить с анкетами на сайтах знакомств: технически они точны и тем не менее сильно вводят в заблуждение.

Допустим, сидя на работе, вы от нечего делать бродите по интернету и наталкиваетесь на онлайн-дневник известной светской львицы Ким Кардашьян, в котором она рассказывает о своей «долгой» (целых семьдесят два дня!) супружеской жизни с профессиональным баскетболистом Крисом Хэмфри. И вот в тот самый момент, когда вы добрались до описания седьмого дня их супружеской жизни, в комнату неожиданно заходит ваш босс с двумя огромными папками данных. В одной из папок собрана информация о гарантийных претензиях по каждому из 57 334 лазерных принтеров, которые ваша фирма продала в прошлом году. (По каждому из проданных лазерных принтеров перечисляются все проблемы с качеством, зафиксированные в течение гарантийного периода.) В другой содержится такая же информация по каждому из 994 773 лазерных принтеров, которые продал за тот же период ваш главный конкурент. Босс хотел бы сравнить качество принтеров вашей компании с качеством принтеров конкурента.

К счастью, на компьютере, на котором вы почитывали дневник Кардашьян, установлен пакет основных статистических методов, но с чего в данном случае начать? Ваша интуиция, по-видимому, подсказывает вам правильное решение: первой описательной задачей зачастую становится поиск некоего показателя «середины» совокупности данных, или того, что статистики называют «центральной тенденцией». Что является типичным показателем качества для ваших принтеров по сравнению с принтерами конкурента? Обычно самым фундаментальным показателем «середины» какого-либо распределения считается среднее значение. В данном случае нам нужно определить среднее количество проблем с качеством на каждый проданный принтер для вашей фирмы и фирмы вашего конкурента. Вы могли бы просто подсчитать общее число выявленных проблем с качеством для всех принтеров в течение гарантийного периода, а затем разделить его на общее количество проданных принтеров. (Учтите, что в течение гарантийного периода в одном и том же принтере может возникнуть несколько проблем с качеством.) Эту операцию можно проделать для каждой компании, создав важную описательную статистику: среднее количество проблем с качеством на каждый проданный принтер.

Предположим, выяснилось, что среднее количество проблем с качеством в течение гарантийного периода у принтеров вашего конкурента равно 2,8 на каждый проданный принтер, тогда как соответствующий показатель для вашей фирмы составляет 9,1. Как видите, вывести среднее значение совсем не сложно. Вы просто использовали информацию для миллиона принтеров, проданных двумя разными компаниями, и извлекли из нее суть интересующей вас проблемы: ваши принтеры ломаются слишком часто. Похоже, самое время отправить боссу по электронной почте краткое уведомление с численным подтверждением столь тревожного факта, а затем вернуться к более увлекательному занятию: чтению дневника Ким Кардашьян.

А может, не стоит торопиться? Я ведь не зря выразился довольно туманно, упомянув о какой-то там «середине» распределения. В этом отношении у среднего значения есть определенные проблемы, а именно: оно подвержено существенным искажениям со стороны «отщепенцев», то есть значений, резко отклоняющихся от центра. Чтобы вам было легче уяснить эту концепцию, вообразите десяток парней, сидящих у стойки бара какого-нибудь питейного заведения в Сиэтле, рассчитанного на представителей среднего класса. Каждый из парней зарабатывает по 35 000 долларов в год; стало быть, средний годовой доход этой группы составляет 35 000 долларов. Внезапно в заведение входит Билл Гейтс с говорящим попугаем на плече (вообще-то в данном примере говорящий попугай не играет никакой особой роли; это не более чем деталь, призванная несколько оживить повествование и придать ему определенный колорит) и усаживается на одиннадцатый стул за стойкой бара; при этом средний годовой доход его завсегдатаев резко повышается до 91 миллиона долларов. Очевидно, что первые десять посетителей бара могут лишь мечтать о таком уровне годового дохода (хотя все они, наверное, надеются, что Билл Гейтс расщедрится и угостит их стаканчиком-другим). Если бы я написал, что средний годовой доход посетителей заведения составляет 91 миллион долларов, то данный вывод был бы статистически правильным, однако не имел бы ничего общего с реальным положением вещей. Этот бар отнюдь не относится к числу заведений, где коротают свободное время мультимиллионеры, – здесь обычно отдыхают молодые люди с относительно невысоким уровнем годовых доходов. Просто сегодня им повезло оказаться в компании с Биллом Гейтсом и его говорящим попугаем. Именно высокая чувствительность среднего значения к значениям, резко отклоняющимся от центра, не позволяет нам измерять экономическое благополучие среднего класса с помощью такого показателя, как величина дохода на душу населения. Поскольку в последнее время наблюдается резкий рост доходов в верхней части распределения – глав компаний, управляющих хедж-фондами и выдающихся спортсменов, таких как Дерек Джетер, – величина среднего дохода в США может быть сильно искажена, как в вышеупомянутом баре, где несколько парней с относительно скромными доходами случайно оказались в компании Билла Гейтса.

По этой причине нам приходится пользоваться еще одной статистикой, которая также является отражением «середины» распределения, однако делает это несколько иначе. Речь идет о так называемой медиане. Медиана – это точка, которая делит распределение пополам таким образом, что одна половина наблюдений располагается выше медианы, а другая половина – ниже. (При наличии четного количества наблюдений медиана представляет собой среднюю точку между двумя средними наблюдениями.) Если мы вернемся к примеру с баром, то срединный (медианный) годовой доход для десяти человек, сидевших поначалу за стойкой, равняется 35 000 долларов. Когда в заведении появился – и уселся на одиннадцатый стул – Билл Гейтс с говорящим попугаем, срединный годовой доход для одиннадцати человек по-прежнему составлял 35 000 долларов. Если представить, что посетители бара расселись за его стойкой в порядке возрастания их доходов, то доход посетителя, сидящего на шестом стуле, будет срединным для данной группы людей. Даже если бы в заведение зашел Уоррен Баффет и уселся рядом с Биллом Гейтсом на двенадцатый стул, медиана все равно осталась бы неизменной[10].

В случае распределений без «отщепенцев» срединное (медиана) и среднее значения совпадают. Выше говорилось о гипотетической сводке данных, отражающих качество принтеров конкурирующей фирмы. В частности, я представил эти данные в виде так называемого частотного распределения (гистограммы). Число проблем с качеством на один принтер представлено на горизонтальной оси (внизу); высота каждого вертикального столбца соответствует проценту проданных принтеров, у которых наблюдалось такое число проблем с качеством. Например, у 36 % принтеров конкурента в течение гарантийного периода возникало по две проблемы с качеством. Поскольку это распределение включает все возможные случаи проблем с качеством (в том числе и их отсутствие), сумма всех долей (процентов) должна равняться 1 (или 100 %).

Поскольку такое распределение почти симметрично, среднее и срединное значения довольно близки друг к другу. Распределение слегка скошено вправо, что объясняется малым количеством принтеров, имеющих множественные дефекты. Эти «отщепенцы» слегка смещают среднее значение вправо, однако на медиану это не влияет. Допустим, что перед тем как составить для босса отчет о качестве принтеров, вы принимаете решение вычислить медианы, то есть число проблем с качеством для принтеров, проданных вашей и конкурирующей компанией. Нажав всего несколько клавиш, вы получите результат. Медиана проблем с качеством для принтеров конкурента равняется 2; а для принтеров вашей фирмы – 1.

Что из этого следует? Оказывается, медиана проблем с качеством на каждый принтер вашей фирмы фактически меньше, чем у вашего конкурента. Поскольку супружеская жизнь Ким Кардашьян становится однообразной, а полученный результат вас заинтриговал, вы распечатываете распределение частот проблем с качеством у принтеров, проданных вашей компанией.

Из приведенных выше гистограмм становится ясно, что для вашей компании нехарактерно равномерное распределение проблем с качеством. Напротив, у вас налицо проблема «лимона»[11]: у малого числа ваших принтеров наблюдается большое количество дефектов. Эти «отщепенцы» способствуют наращиванию среднего значения, тогда как медиана остается неизменной. Более важным с производственной точки зрения является то обстоятельство, что вам нет необходимости переоснащать весь производственный процесс; достаточно лишь определить, какое из предприятий компании выпускает некачественную продукцию, и исправить ситуацию[12].

Перейти на страницу:

Чарльз Уилан читать все книги автора по порядку

Чарльз Уилан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Голая статистика. Самая интересная книга о самой скучной науке отзывы

Отзывы читателей о книге Голая статистика. Самая интересная книга о самой скучной науке, автор: Чарльз Уилан. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*