МЛЕЧНЫЙ ПУТЬ №1, 2016(16) - Александра Юргенева
«Теории гравитации можно придумывать разные. Все они будут одинаково хорошо описывать наш мир, пока мы ограничиваемся одним-единственным ее проявлением – ньютоновским законом всемирного тяготения. Но существуют и другие, более тонкие гравитационные эффекты, которые были экспериментально проверены на масштабах Солнечной системы, и они указывают на одну конкретную теорию – общую теорию относительности (ОТО). http://elementy.ru/novosti_nauki/432628/Stoletie_OTO_ili_Yubiley_Pervoy_noyabrskoy_revolyutsii
ОТО – это не просто набор формул, это принципиальный взгляд на суть гравитации. Если в обычной физике пространство служит лишь фоном, вместилищем для физических явлений, то в ОТО оно само становится явлением, динамической величиной, которая меняется в согласии с законами ОТО. Эти искажения пространства-времени относительно ровного фона – или, на языке геометрии, искажения метрики пространства-времени – и ощущаются как гравитация. Говоря кратко, ОТО вскрывает геометрическое происхождение сил тяготения.
У ОТО есть важнейшее предсказание: гравитационные волны. Это искажения пространства-времени, которые способны «оторваться от источника» и, самоподдерживаясь, улететь прочь. Это гравитация сама по себе, ничья, своя собственная. Альберт Эйнштейн окончательно сформулировал ОТО в 1915 году и почти сразу понял, что полученные им уравнения допускают существование таких волн.
Как и для всякой честной теории, такое четкое предсказание ОТО должно быть проверено экспериментально. Излучать гравитационные волны могут любые движущиеся тела: и планеты, и брошенный вверх камень, и взмах руки. Проблема, однако, в том, что гравитационное взаимодействие столь слабое, что никакие экспериментальные установки не способны заметить излучение гравитационных волн от обычных «излучателей».
Чтобы «погнать» мощную волну, нужно очень сильно исказить пространство-время. Идеальный вариант – две черные дыры, вращающиеся друг вокруг друга в тесном танце, на расстоянии порядка их гравитационного радиуса. Искажения метрики будут столь сильными, что заметная часть энергии этой пары будет излучаться в гравитационные волны. Теряя энергию, пара будет сближаться, кружась всё быстрее, искажая метрику все сильнее и порождая еще более сильные гравитационные волны, пока наконец не произойдет кардинальная перестройка всего гравитационного поля этой пары и две черных дыры не сольются в одну.
Рис. 1. Тесная пара черных дыр за мгновение до слияния. Изображение с сайта ligo.org
http://www.ligo.org/science/GW-GW2.php
Такое слияние черных дыр – взрыв грандиозной мощности, но только уходит вся эта излученная энергия не в свет, не в частицы, а в колебания пространства. Излученная энергия составит заметную часть от исходной массы черных дыр, и выплеснется это излучение за доли секунды».
Как же обнаружить гравитационные волны? Самыми перспективными оказались детекторы, в которых отслеживается расстояние между двумя не связанными друг с другом, независимо подвешенными телами, например, двумя зеркалами. Из-за колебания пространства, вызванного гравитационной волной, расстояние между зеркалами будет то чуть больше, то чуть меньше. Чем больше длина плеча, тем большее абсолютное смещение вызовет гравитационная волна заданной амплитуды. Эти колебания сможет почувствовать лазерный луч, бегающий между зеркалами. Такая схема способна регистрировать колебания в широком диапазоне частот, от 10 герц до 10 килогерц, и это именно тот интервал, в котором будут излучать сливающиеся пары нейтронных звезд или черных дыр звездных масс».
Современная реализация этой идеи на основе интерферометра Майкельсона выглядит следующим образом. В двух длинных, длиной в несколько километров, перпендикулярных друг другу вакуумных камерах подвешиваются зеркала. На входе в установку лазерный луч расщепляется, идет по обеим камерам, отражается от зеркал, возвращается обратно и вновь соединяется в полупрозрачном зеркале. Добротность оптической системы исключительно высока, поэтому лазерный луч не просто проходит один раз туда-обратно, а задерживается в этом оптическом резонаторе надолго. В «спокойном» состоянии длины подобраны так, чтобы два луча после воссоединения гасили друг друга в направлении датчика, и тогда фотодетектор оказывается в полной тени. Но стоит лишь зеркалам под действием гравитационных волн сместиться на микроскопическое расстояние, как компенсация двух лучей станет неполной и фотодетектор уловит свет. И чем сильнее смещение, тем более яркий свет увидит фотодатчик.
Слова «микроскопическое смещение» даже близко не передают всей тонкости эффекта. Смещение зеркал на длину волны света, то есть микрон, заметить проще простого даже без каких-либо ухищрений. Но при длине плеча 4 км это отвечает колебаниям пространства-времени с амплитудой 10-10. Заметить смещение зеркал на диаметр атома тоже не представляет проблем – достаточно запустить лазерный луч, который пробежит туда-сюда тысячи раз и получит нужный набег фазы. Но и это дает от силы 10-14. А нам нужно спуститься по шкале смещений еще в миллионы раз, то есть научиться регистрировать сдвиг зеркала даже не на один атом, а на тысячные доли атомного ядра!
На пути к этой поистине поразительной технологии физикам пришлось преодолевать множество трудностей. В гонке за гравитационными волнами участвовал целый список стран; но лидерами являются две лаборатории — американский проект LIGO иhttps://www.ligo.caltech.edu/ итальянский детектор Virgo http://www.virgo-gw.eu/ .
LIGO включает в себя два одинаковых детектора, расположенных в Ханфорде (штат Вашингтон) и в Ливингстоне (штат Луизиана) и разнесенных друг от друга на 3000 км. Наличие двух установок важно сразу по двум причинам. Во-первых, сигнал будет считаться зарегистрированным, только если его увидят оба детектора одновременно. А во-вторых, по разности прихода гравитационно-волнового всплеска на две установки – а она может достигать 10 миллисекунд – можно примерно определить, из какой части неба этот сигнал пришел.
Рис. 2. Гравитационно-волновой детектор в Ханфорде – один из двух детекторов обсерватории LIGO.
http://www.nature.com/news/the-hundred-year-quest-for-gravitational-waves-in-pictures-1.19340
Создание гравитационной обсерватории LIGO было инициативой трех ученых из Массачусетского технологического института (MIT) и из Калифорнийского технологического института (Калтеха). Это Райнер Вайсс, который реализовал идею интерферометрического гравитационно-волнового детектора, Рональд Дривер, добившийся достаточной для регистрации стабильности лазерного света, и Кип Торн, теоретик-вдохновитель проекта, ныне хорошо известный широкой публике в качестве научного консультанта фильма «Интерстеллар».
Хотя первоначальный импульс проекту задали США, обсерватория LIGO является по-настоящему международным проектом. В него вложились, финансово и интеллектуально, 15 стран, и членами коллаборации числятся свыше тысячи человек. Важную роль в реализации проекта сыграли советские и российские физики. С самого начала активное участие в реализации проекта LIGO принимала группа Владимира Брагинского из МГУ, а позже к коллаборации присоединился и Институт прикладной физики из Нижнего Новгорода.
Коллаборация LIGO не ограничилась одной лишь констатацией факта регистрации гравитационных волн, но и провела первый анализ того, какие это наблюдение имеет последствия для астрофизики. Авторы оценили, с какой частотой происходят слияния массивных черных дыр. Получилось как минимум одно слияние в кубическом гигапарсеке за год, что сходится с предсказаниями наиболее оптимистичных в этом отношении моделей.
О чем расскажут гравитационные волны
Открытие нового явления после десятилетий поисков – это не завершение, а лишь начало нового раздела физики. Конечно, регистрация гравитационных волн от слияния двух черных дыр важна сама