Александр Потупа - Бег за бесконечностью
А. Комптон придумал для новых частиц отличное название - фотоны. С тех пор сдвиг длины волны рассеянного излучения именуется "эффектом Комптона".
Не менее интересна и история предоткрытия, а потом и экспериментального обнаружения третьего патриарха микромира - протона. В этой истории удивительно сильно сконцентрированы все надежды и достижения первопроходцев физики элементарных частиц.
Четкая формулировка исходной гипотезы о существовании некой частицы, несущей положительный электрический заряд, равный по абсолютной величине заряду электрона, но имеющей примерно в 1840 раз большую, чем у электрона, массу, принадлежит Э. Резерфорду. Она логически неизбежно вытекала из результатов работ по классификации известных атомных ядер. Все они выстраивались в последовательную цепочку по величине электрического заряда, который, в свою очередь, соответствовал порядковому номеру вещества в периодической системе элементов Д. Менделеева. Таким образом, ядро атома водорода, несущее единичный положительный заряд, должно было представлять собой элементарный объект, который одновременно играл роль строительного кирпичика для остальных ядер.
Гипотеза Э Резерфорда была настолько естественна и остальные параметры этой, названной протоном, частицы были вычислены до того надежно, что, пожалуй, ни у кого и не должно было возникнуть серьезных сомнений в ее существовании Прямая же экспериментальная регистрация новой частицы состоялась только через несколько лет, в 1925 году.
Вскоре после открытия атомных ядер Э Резерфорд поставил перед своей лабораторией труднейшую задачу- вызвать искусственную радиоактивность, обстреливая ядра альфа-частицами.
Действительно, если ядра способны к самопроизвольным превращениям, в результате которых происходит испускание, например, тех же альфа-частиц (так называемая естественная радиоактивность), то почему нельзя добиться аналогичных превращений искусственно, с помощью подобающих "мер внушения"?
Сам Э. Резерфорд предпринял, начиная с 1919 года, ряд попыток расщепить ядро; но полученные им данные не были достаточно убедительны. Тогда эстафету учителя принял представитель старой резерфордовской гвардии П. Блэккет.
Изучая рассеяние альфа-частиц на азоте, П. Блэккет блестяще справился с предложенной проблемой. Но новая элементарная частица не очень-то стремилась к саморекламе. В процессе ее поиска ему пришлось пересмотреть более 20 тысяч фотографий, где было зарегистрировано около полумиллиона траекторий одних только альфа-частиц. И лишь среди них он сумел отыскать восемь редких событий: ядра азота захватывали альфа-частицу и превращались в ядра кислорода, испуская протон!
Так на физическую сцену вышел главный герой современной физики высоких энергий - протон. У него пока почти все впереди. Он еще доставит десятки бессонных ночей экспериментаторам, теоретикам, конструкторам уникальных приборов. Одно упоминание о нем будет приводить в трепет правительственные комиссии по финансированию науки. И в довершение всего он окажется на редкость "неблагодарным" - первым из представителей микромира подаст глубоко обоснованный протест по поводу столь привычного и безобидного прилагательного "элементарный". Но все это впереди, а пока нам необходимо в корне пресечь одно назревающее недоразумение.
Только что было сказано, что протон обнаружился при просмотре фотографий. А можно ли сделать фотопортрет элементарного объекта, размеры которого примерно в сто тысяч раз меньше атома? Любой начинающий фотолюбитель скажет, что этого не может быть. И окажется вполне прав, хотя... портреты протона все-таки существуют.
Фотопленка фиксирует, конечно же, не самих героев микромира, а следы, которые они оставляют в том или ином веществе, и которые, как правило, видны даже невооруженным глазом. Но наши герои - великие конспираторы: они никогда не оставляют следов где попало. Поэтому вещество, в котором мы хотим зафиксировать движение микрочастиц, должно быть приведено в особое состояние и реагировать на появление долгожданных гостей так, чтобы глаза или фотоаппарат могли уловить эту реакцию. В общем, это напоминает устройство специальных полос разрыхленной земли вдоль государственных границ - любой пешеход-нарушитель поневоле должен оставить свою "визитную карточку".
А теперь нам снова придется взглянуть на события достославного 1897 года. Взглянуть для того, чтобы исправить небольшую неточность и сказать: это не просто дата рождения электрона, а дважды юбилейный год, ибо тогда был создан прибор, который сами же физики называли "уникальным окном в ядерный мир".
Итак, в 1897 году двадцативосьмилетний физик Ч. Вильсон, исследовавший проблему конденсации облаков из водяного пара, открыл интересный эффект. Известно, что в воздухе, перенасыщенном водяными парами, мельчайшие частички пыли становятся центрами конденсации влаги. Из огромного количества таких центров формируются симпатичные белые облачка и устрашающие "свинцовые" тучи. Ч. Вильсон обнаружил, что после достаточно полной очистки воздуха роль пылинок начинают играть заряженные частицы, например, ионы, вокруг которых охотно образуются капельки воды. Отсюда немедленно следовала идея прибора регистратора невидимок.
В сосуде, снабженном поршнем, создавалось насыщение водяного пара, затем с помощью поршня резко менялось давление и достигался нужный уровень перенасыщения, а в такой ситуации попадавшие внутрь заряженные частицы оставляли следы - полоски тумана. Так родилась знаменитая "камера Вильсона". Вскоре она была использована для исследования характеристики электрона, сослужила добрую службу в выяснении природы радиоактивности и, наконец, помогла П. Блэккету открыть протон.
Физика элементарных частиц родилась в процессе исследования всевозможных загадочных излучений. Поиски разгадок, несомненно, принесли замечательные плоды, но эти плоды не имели даже привкуса окончательной ясности и не сулили вкусившему их долгожданной радости. Катодные лучи поток электронов? Очень хорошо! А почему электрон несет заряд, составляющий 1,6021892.10-19 кулона? Почему электрический заряд протона по абсолютной величине с поразительной точностью совпадает с зарядом электрона, тогда как масса протона в 1836,15152 раза больше?
И конечно, существует множество других трудных вопросов, появившихся вместе с первыми частицами и до сих пор не имеющих ответа.
(C) Александр Потупа (Alexander Potupa) Бег за бесконечностью. Молодая гвардия (Эврика), Москва, 1977 (Run for Infinity; переводы: на венгерский - Utazas az elemi reszecskek vilagaba. Muszaki Konyvkiado,Budapest, 1980; на болгарский - Гонене на безкрайността. Наука и изкуство (Еврика), София, 1980)
(adsbygoogle = window.adsbygoogle || []).push({});