Kniga-Online.club
» » » » Александр Потупа - Бег за бесконечностью

Александр Потупа - Бег за бесконечностью

Читать бесплатно Александр Потупа - Бег за бесконечностью. Жанр: Научная Фантастика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Однако с измерениями в микромире связаны не только многочисленные технические трудности, бросающие вызов всем областям науки, участвующим в создании необходимых приборов. Существуют и некоторые принципиальные ограничения.

Предположим, мы хотим выяснить положение электрона в пространстве и скорость, с которой он движется. Для определения положения электрона прежде всего необходимо его осветить. Причем чем точнее мы хотим знать, где он находится, тем короче должна быть длина волны используемого освещения. Это общее правило, следуя которому создаются, например, микроскопы и любые другие приборы для обнаружения и изучения тех или иных препятствий. Скажем, для обнаружения самолета используются радиоволны дециметрового диапазона. Самолет имеет размеры порядка нескольких метров, то есть в десятки раз больше, чем длина волны "освещения", и радиолокационной установки

в дециметровом диапазоне достаточно для того, чтобы он не проскочил незамеченным. Хорошо известно, что обычные оптические микроскопы - сколь бы мощными линзами их ни снабжали - имеют предел применимости: в них нельзя рассмотреть объекты, размер которых меньше длин волн видимого света. Практически же наблюдать можно лишь объекты, размер которых раз в десять превосходит длину волны излучения, которым освещается объект.

В нашем мысленном эксперименте все позволено. Мы можем не ограничиваться сравнительно длинноволновым излучением, характерным для радиодиапазона или видимого света, а использовать, например, ультрафиолетовое, рентгеновское или даже гамма-лучевое освещение. Более того, мы можем вообразить особое устройство, которое позволяет сколь угодно уменьшать длину волны. Такое устройство - величайшая, но пока, увы, недосягаемая мечта исследователей; однако его вполне можно использовать в мысленном опыте - оно не противоречит никаким принципам физики!

Но правило, которое мы применяли в случае радиолокационной установки или оптического микроскопа, будет действовать и в любом другом случае. Оно связано с волновой природой электромагнитного поля и в более точном виде звучит так: погрешность в определении размера или положения некоторого объекта никогда не может быть сделана меньше длины волны используемого освещения.

Разумеется, имея под рукой чудесное устройство для беспредельного уменьшения длины волны, мы способны сделать и погрешность сколь угодно малой, то есть определить положение интересующего нас электрона со сколь угодно высокой точностью. Но тут-то оказывается, что мы начисто теряем возможность решить вторую часть поставленной задачи; как вы помните, необходимо определить еще и скорость электрона.

В этом пункте неприятности наступают из-за двойственной природы электромагнитного поля. Оно ведь может быть представлено и как поток фотонов! Но фотон обладает определенным импульсом, причем этот импульс пропорционален частоте или обратно пропорционален длине волны. Падая на электрон, фотоны будут передавать ему часть импульса, то есть сообщать дополнительную скорость - этот процесс соответствует эффекту Комптона. Погрешность в определении импульса электрона как раз и равна (примерно!) импульсу, который фотон передает электрону в каждом отдельном акте соударения. В свою очередь, переданный импульс приблизительно равен фундаментальной постоянной Планка (h), деленной на длину волны.

Теперь займемся простой алгеброй - перемножим погрешности в определении как положения электрона (Дх), так и его импульса (Др). Оказывается, что их произведение вообще не зависит от длины волны освещения и примерно равно постоянной Планка. Заключительная формула имеет вид соотношений неопределенностей Гейзенберга (Дх).(Др) B h

Разобранный здесь мысленный эксперимент был придуман в свое время самим В. Гейзенбергом для наглядного вывода одного из вариантов своих знаменитых соотношений и даже имеет особое название - микроскоп Гейзенберга

Этот эксперимент действительно в чрезвычайно наглядной форме показывает, что к определению наблюдаемых величин в микромире следует подходить с особой осторожностью. Казалось бы, чего уж проще - решили измерить положение частицы и ее импульс, или скорость, а оказывается, что без света ничего сделать нельзя (нет наблюдения'), а со светом одновременное точное определение двух величин - координаты и импульса - вообще невозможно

С точки зрения квантовой механики наша ошибка заключена уже в самой постановке задачи - электрону не следовало заранее приписывать свойство "обладать одновременно точным значением координаты и точным значением импульса" Это просто неоправданное распространение классических представлений из привычного для нас мира больших и тяжелых тел на ту область, где они неприменимы

Таковы основные сложности, подстерегающие всех, кто пытается получить полезную информацию об устройстве микромира. Однако если трудности в создании приборов преодолены, а квантовомеханические тонкости учтены, остается главный вопрос, как пробиться к очень малым расстояниям'

Очевидный путь связан с получением все меньших и меньших длин воли, разумеется, не только световых, но и дебройлевских волн любых элементарных частиц, фактически же, поскольку дебройлевская длина волны обратно пропорциональна импульсу частицы, следует создавать пучки частиц, обладающих все более высоким импульсом. Следовательно, тайны сверхмалых расстояний могут раскрыться только перед теми, кто сумеет использовать в своих экспериментах частицы с достаточно высокими энергиями Прорыв к малым и сверхмалым пространственным областям - бесспорно, достойная цель и одна из главнейших причин упомянутой выше "филологической метаморфозы" Однако за такой формулировкой задачи кроется на самом деле более глубокое содержание.

Внутренность пустой коробки, очень большой или очень малой, вряд ли может кого-нибудь заинтересовать Точно так же, для нас важны не впечатляющие пространственные размеры вблизи краев рассмотренного диапазона - 10-15 или 1028 сантиметров, - а те объекты и процессы, которые "за ними скрываются" Нам необходимо выяснить, не существуют ли за последней достигнутой пока ступенькой великой иерархической лестницы под названием "элементарные частицы" какие-то новые ступени, где еще не отпечатаны следы "всепроникающих человеческих башмаков". Не отыщутся ли там какие-то неведомые субэлементарные объекты, из которых на самом деле выстроены все известные сейчас частицы?

Весь исторический опыт, накопленный физиками, вроде бы выступает за положительный ответ. Ведь до сих пор в процессе исследования структуры вещества неизменно обнаруживался долгожданный следующий уровень строения. Действительно, составные объекты - очень частое явление. Под ними можно понимать совокупность каких-то иных, более простых объектов, называемых частями, которые связаны между собой определенными силами. Кусок железа, притянутый магнитом, - хороший пример типично составного объекта. Если мы заранее договоримся, что на расстоянии, скажем, одного метра друг от друга взаимодействием магнита с куском железа можно пренебречь, то, измеряя усилие, которое необходимо приложить для их разделения, предположим, оно оказалось равным 1 кГ (килограмм силы), мы без труда вычислим работу, затраченную на превращение одного составного объекта в две независимые части: в данном случае эта работа составляет один килограммометр (по-другому она называется энергией связи).

(adsbygoogle = window.adsbygoogle || []).push({});
Перейти на страницу:

Александр Потупа читать все книги автора по порядку

Александр Потупа - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Бег за бесконечностью отзывы

Отзывы читателей о книге Бег за бесконечностью, автор: Александр Потупа. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*