Грег Иган - Лестница Шильда, роман
В 1990-е Ли Смолин и Карло Ровелли обнаружили, что в квантовой гравитации, где спиновосетевые состояния наделены простой геометрической интерпретацией, имеет место аналогичное явление: площадь поверхности зависит только от числа ребер сети, пересекающих ее. Эти ребра мыслятся квантованными «линиями потока площади»; в квантовой гравитации площадь и прочие геометрические параметры принимают значения из дискретного спектра вариантов. Впоследствии оказывается удобным проквантовать и саму топологию, причем узлы и ребра постепенно вытесняют обычное представление о пространстве как о континууме точек.
В первые десятилетия нового тысячелетия Джон Баэз, Фотини Маркопулу, Хосе-Антонио Сапата и их коллеги добились выдающихся результатов в исследовании законов динамики спиновых сетей. В их подходе процессам межсетевой эволюции (преобразования одной сети в другую) приписываются квантовые амплитуды. В 2030-е Сарумпет начал систематизацию этих работ и на их основе построил новую модель, в которой использовал графы произвольной валентности с неразмеченными узлами.
Геометрия трехмерного пространства возникает при рассмотрении четырехвалентных графов, где четыре ребра, исходящие из каждого узла, ограничивают площадь грани так называемого «квантового тетраэдра». Если рассматривать графы высших валентностей, можно столкнуться с нежелательными осложнениями: структуру взрывоподобно заполонят новые измерения. Но Сарумпет вывел простой динамический закон, ограничивающий среднюю валентность значением 4. В то же время трехвалентные и пятивалентные узлы (так называемые «допанты»[126] по аналогии с примесями в полупроводниках) разрешены правилами Сарумпета в том смысле, что они образуют специальные узоры: замкнутые, возможно, заузленные цепи с переменной валентностью. Эти петли узлов-допантов, классифицированные по симметриям и типам взаимодействий, находятся в отличном соответствии с частицами СМ.
Поскольку характерная площадь, отграниченная ребрами квантового графа, по порядку величины соответствует нескольким квадратным планковским длинам l2pl, то есть примерно в 1050 раз меньше площади поверхности атома водорода, одно время опасались, что КТГ останется недоступна экспериментальной проверке еще много веков. Но в 2043 г. компьютерное моделирование позволило выявить новый класс «полимерных состояний»: длинные разомкнутые цепи узлов-допантов, времена полураспада и характерные энергии которых находились уже в пределах досягаемости современной технологии.
В настоящее время поиск полимерных состояний ведется на Орбитальном Ускорителе, запущенном в 2049 г. Уже достигнуты первые успехи. Если эти результаты удастся воспроизвести, правила Сарумпета из самого элегантного описания Вселенной быстро станут самым вероятным и, скорее всего, единственно верным…
ДекогеренцияДекогеренция - квантовый феномен, ключевой для понимания многих событий «Лестницы Шильда». Кроме того, понимание процессов декогеренции очень важно для исследования квантовой механики в классическом пределе.
Основная идея состоит в следующем: изолированная квантовая система А ведет себя квантовомеханически, демонстрируя интерференционные эффекты, отражающие разность фаз различных компонент вектора состояния. Например, если А состоит из электрона в состоянии суперпозиции равных частей «спин вверх» и «спин вниз», можно провести эксперименты, чувствительные к разности фаз этих компонент. В этом заключается существенное отличие от классического понимания вероятности: нельзя сказать, что у спина электрона 50 %-е шансы оказаться в состоянии «| ↓» и 50 %-е — в состоянии «I ↑». Скорее имеет смысл говорить, что обе вероятности сосуществуют, а фаза описывает их взаимодействие. Если бы какая-то из компонент отсутствовала, и понятие фазы не имело бы смысла.
Если система А взаимодействует с другой системой В таким образом, что различные компоненты вектора состояния А влияют на В независимо друг от друга, говорят, что две системы запутаны (entangled). В таком случае наблюдения за А больше не выявят квантовых эффектов. Система А,как представляется наблюдателю, «коллапсировала» в состояние, где присутствует только одна компонента исходного вектора состояния. В ранее рассмотренном примере с электроном система ведет себя так, будто для спина вероятность оказаться в состоянии «только I ↑» или «только | ↓» составляла в точности 50/50.
Но в действительности такого коллапса не происходит. Если измерения произвести с объединенной системой, А + В, окажется, что она находится в чистом квантовом состоянии, а все компоненты исходного вектора состояния системы А сохранились. Классической физикой потому и пользуются, что полная информация, необходимая для обнаружения квантовых феноменов на макроуровне, нам, как правило, недоступна.
На моем сайте:
http: //gregegan.customer.netspace.net.аu/SCHILD/Decoherence/DecoherenceApplet.html
доступен с тремя экспериментами, в которых показано, как извлечь, казалось бы, потерянную информацию о состоянии запутанной части составной системы при наблюдении за системой в целом.
Спиновые сетиСпиновые сети ― состояния квантовой геометрии в теории квантовой гравитации, открытые Ли Смолиным и Карло Ровелли. Это понятие — ключевой концептуальный предшественник вымышленной физики «Лестницы Шильда».
Одним из способов описания геометрии пространства выступает описание способа, каким векторы переносятся вдоль любого пути — этот процесс известен под названием «параллельного переноса». В искривленном пространстве параллельный перенос по петле обычно поворачивает вектор относительно исходного направления; известным следствием отсюда выступает тот факт, что при этом сумма углов треугольника отличается от 180 градусов.
(adsbygoogle = window.adsbygoogle || []).push({});