Поднятие тяжестей – пустая трата времени - Генри Элкайр
58
Kawada, S. & Ishii, N. (2005). Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Medicine and Science in Sports and Exercise, 37(7), 1144–1150.
59
Nielsen, J. L., Aagaard, P., Bech, R. D., Nygaard, T., Hvid, L. G., Wernbom, M., … & Frandsen, U. (2012). Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. The Journal of Physiology, 590(17), 4351–4361.
60
Нетреба А. И., Попов Д. В., Любаева Е. В., Бравый Я. Р., Простова А. Б., Лемешева Ю. С., Виноградова О. Л. (2007). Физиологические эффекты использования низкоинтенсивной силовой тренировки без расслабления в односуставном и многосуставном движениях. Российский физиологический журнал им. И. М. Сеченова. 93: 27–38.
61
Нетреба А. И., Попов Д. В., Бравый Я. Р., Мисина С. С., Виноградова О. Л. (2009). Физиологические эффекты низкоинтенсивной силовой тренировки без расслабления. Физиология человека, том 35: с. 97–102.
62
Lixandrão, Manoel E., et al. “Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction.” European Journal of Applied Physiology 115.12 (2015): 2471–2480.
63
Nishimura, A, Sugita, M, Kato, K, Fukuda, A, Sudo, A, and Uchida, A. Hypoxia increases muscle hypertrophy induced by resistance training. Int. J. Sports Physiol. Perform. 5: 497–508, 2010.
64
Contreras, B., & Schoenfeld, B. (2016, February 20). Tip: Use Continuous Tension for Muscle Gains. Retrieved January 14, 2020, from https://www.t-nation.com/training/tip-use-continuous-tension-for-muscle-gains
65
Feriche, B., García-Ramos, A., Morales-Artacho, A. J., & Padial, P. (2017). Resistance training using different hypoxic training strategies: a basis for hypertrophy and muscle power development. Sports Medicine-Open, 3(1), 12.
66
Moritani, T., Sherman, W. M., Shibata, M., Matsumoto, T., & Shinohara, M. (1992). Oxygen availability and motor unit activity in humans. European Journal of Applied Physiology and Occupational Physiology, 64(6), 552–556.
67
Stock, M. S., Beck, T. W., DeFreitas, J. M., & Dillon, M. A. (2011). Test – retest reliability of barbell velocity during the free-weight bench-press exercise. The Journal of Strength & Conditioning Research, 25(1), 171–177.
68
Saeterbakken, A. H., & Fimland, M. S. (2012). Muscle activity of the core during bilateral, unilateral, seated and standing resistance exercise. European Journal of Applied Physiology, 112(5), 1671–1678.
69
McDowell, M. A., Fryar, C. D., & Ogden, C. L. (2009). Anthropometric reference data for children and adults: United States, 1988–1994. Vital and health statistics. Series 11, Data from the national health survey, (249), 1–68.
70
US Food and Nutrition Board’s 2005 textbook. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. 275–277.
71
Merriam-Webster. (n. d.). Macronutrient. In Merriam-Webster.com dictionary. Retrieved March 9, 2020, from https://www.merriam-webster.com/dictionary/macronutrient
72
Antonio, J., Peacock, C. A., Ellerbroek, A., Fromhoff, B., & Silver, T. (2014). The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. Journal of the International Society of Sports Nutrition, 11(1), 19.
73
Longland, T. M., Oikawa, S. Y., Mitchell, C. J., Devries, M. C., & Phillips, S. M. (2016). Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. The American Journal of Clinical Nutrition, 103(3), 738–746.
74
Borman, A., T. R. Wood, H. C. Black, E. G. Anderson, M. J. Oesterling, M. Womack and W. C. Rose. (1946). The role of arginine in growth with some observations on the effects of argininic acid. J. Biol. Chem. 166: 585.
75
Rose, W. C. (1949). Amino acid, requirements of man. In Federation Proceedings. Federation of American Societies for Experimental Biology (Vol. 8, pp. 546–652).
76
Kopple, J. D., & Swendseid, M. E. (1975). Evidence that histidine is an essential amino acid in normal and chronically uremic man. The Journal of Clinical Investigation, 55(5), 881–891.
77
Kriengsinyos, W., Rafii, M., Wykes, L. J., Ball, R. O., & Pencharz, P. B. (2002). Long-term effects of histidine depletion on whole-body protein metabolism in healthy adults. The Journal of Nutrition, 132(11), 3340–3348.
78
Lucà-Moretti, M. (1998). A Comparative, Double-blind, Triple Crossover Net Nitrogen Utilization Study Confirms the Discovery of the Master Amino Acid Pattern. Age (years), 152(176), 41–5.
79
Hoffman, J. R., & Falvo, M. J. (2004). Protein – which is best? Journal of Sports Science & Medicine, 3(3), 118.
80
Antonio, J., Peacock, C. A., Ellerbroek, A., Fromhoff, B., & Silver, T. (2014). The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. Journal of the International Society of Sports Nutrition, 11(1), 19.
81
Longland, T. M., Oikawa, S. Y., Mitchell, C. J., Devries, M. C., & Phillips, S. M. (2016). Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. The American Journal of Clinical Nutrition, 103(3), 738–746.
82
Lucà-Moretti, M. (1998). A Comparative, Double-blind, Triple Crossover Net Nitrogen Utilization Study Confirms the Discovery of the Master Amino Acid Pattern. Age (years), 152(176), 41–5.
83
Pasiakos, S. M., McClung, H. L., McClung, J.