Kniga-Online.club
» » » » Андрей Кашкаров - Занимательная электроника. Нешаблонная энциклопедия полезных схем

Андрей Кашкаров - Занимательная электроника. Нешаблонная энциклопедия полезных схем

Читать бесплатно Андрей Кашкаров - Занимательная электроника. Нешаблонная энциклопедия полезных схем. Жанр: Сделай сам издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

При подключении светодиода АЛ307БМ последовательно с мигающим, но в обратном направлении обнаружился тот же эффект, что и вообще без светодиода АЛ307БМ.

Вариант 2. Шунтирование вывода 7 микросхемы DA1 на общий провод.

Форма импульсов на выходе генератора приближена к прямоугольной. Частота выходного сигнала 2225 Гц. На слух звук напоминает потрескивание электрических разрядов.

Рис. 2.6. График зависимости выходного сигнала от питающего напряжения в варианте 2

На графике зависимости сигнала от питающего напряжения (рис. 2.6) наглядно видно, что при понижении Un ниже 10 В появляется стабильная генерация импульсов частотой от 500 до 800 Гц с периодом следования (прерыванием) частотой примерно 2 Гц (рис. 2.7).

Рис. 2.7. Стабильная генерация импульсов частотой от 500 до 800 Гц с периодом следования (прерыванием) частотой примерно 2 Гц

Вариант 3. Подключение мигающего светодиода к объединенным входам 2 и 6 микросхемы DA1 и положительному полюсу источника питания (см. рис. 2.8).

Рис. 2.8. Электрическая схема подключения мигающего светодиода к объединенным входам 2 и 6 микросхемы DA1 и положительному полюсу источника питания

На подключенном к выходу генератора осциллографе (при Un=12 В) наблюдаются пачки импульсов, состоящие из двух прямоугольников (рис. 2.9).

Рис. 2.9. Вид, форма импульсов и график зависимости выходного сигнала от питающего напряжения при различных подключениях

На слух работа генератора воспринимается как звук медицинского аппарата, контролирующего работу человеческого сердца (звуки «пик-пик» в момент прохождения пульса). Светодиод не светится. Он начинает слабо вспыхивать, только если последовательно с ним включить ограничительный резистор сопротивлением 330 Ом, что на работу генератора не влияет.

При уменьшении Un до 5 В фиксируется прерывистый звуковой сигнал с базовой частотой генератора 800 Гц. При уменьшении Un до 3,5 В пьезоэлектрический капсюль HA1 излучает однотональный сигнал соответствующей (напряжению питания) амплитуды и частотой, примерно равной 600 Гц.

Интересно, что справочные (известные в открытых источниках) данные микросхемы КР1006ВИ1 показывают, что она стабильно работает в интервале постоянного питающего напряжения 4,5-16 В, однако приведенный выше пример позволяет использовать схему генератора с мигающим светодиодом и (в том числе) с пониженным, относительно номинального, напряжением питания микросхемы.

Вариант 4. Шунтирование входа 7 микросхемы DA1 светодиодом на положительный полюс источника питания.

Светодиод HL1 мигает с частотой примерно 2 Гц. На выходе генератора фиксируется двухтональный звук, напоминающий на слух сирену пожарной машины.

В момент зажигания светодиода HL1 базовая частота генератора увеличивается примерно вдвое. Этот эксперимент иллюстрирует рисунок 2.10.

Рис. 2.10. Иллюстрация увеличения частоты сигнала в эксперименте по варианту 4

При увеличении питающего напряжения свыше 12 В характер чередования сигнала не меняется, но изменяется сама граница частоты. Так, при Un=15 В верхний предел частоты уже не 1200 Гц, а более 1500. При увеличении питающего напряжения свыше 16 В генерация срывается.

Вариант 5. Мигающий светодиод L517hD-F заменяется на фоторезистор СФ3-3 и подключается, как и в варианте 3, к 6-му выводу микросхемы DA1. Другим выводом фоторезистор подключается поочередно (варианты): «А» – к отрицательному и «Б» – к положительному полюсу источника питания (при Un=12 В).

Это подключение иллюстрирует рисунок 2.11.

Результат следующий: при затемнении фоторезистора в варианте «А» пьезоэлектрический капсюль НА1 воспроизводит колебания звуковой частоты около 1000 Гц. При освещении рабочей поверхности фоторезистора генерация отсутствует.

В варианте «Б» результат аналогичный. Необходимо только отметить, что в этом случае чувствительность устройства к освещенности в несколько раз лучше.

Рис. 2.11. Подключение с помощью фоторезисторов

При уменьшении напряжения питания до +5 В все повторяется, с той лишь разницей, что громкость звукового сигнала и амплитуда импульсов соответственно ниже, а частота выходного (воспроизводимого) сигнала находится в районе 500–600 Гц.

На основе рассмотренного эффекта можно создать немало удивительных приборов наподобие незаслуженно забытого «терменвокса», где звуковое сопровождение изменялось в зависимости от емкости вокруг антенн.

Рассмотренное в варианте 5 устройство может изменять громкость и частотную палитру звука в зависимости от светового потока на рабочей поверхности фоторезистора, который (поток) можно соответственно затемнять или усиливать манипуляциями рук вокруг фоторезистора.

Напряжение питания 12 В при проведении эксперимента обеспечивалось стабилизированным источником питания.

Вариантов применения устройства прерывистой и трехтональной (вариант 1) сигнализации очень много, и они ограничиваются только творческими замыслами радиолюбителя.

Такие электронные схемы можно применять в качестве сигнализатора открывания дверцы старого холодильника (новые таким функционалом снабжены). Или опять же, к примеру, повышения контролируемой температуры; в любом случае конструкция будет отличаться мягким, необычным звучанием, достаточной для восприятия в одном помещении громкостью и простотой повторения (необходимо соответственно случаю добавить мигающий светодиод к стандартной схеме таймера КР1006ВИ1).

Конкурировать по простоте и себестоимости с описанным вариантом могут зуммеры, изготовленные на производстве, рассчитанные на широкий спектр постоянного напряжения, например FMQ-2724, или аналогичные электронные устройства, построенные, к примеру, на микросхеме КР1436АП1 с прерывистой регулируемой генерацией.

Включение мигающего светодиода в цепь управления генерацией микросхемы КР1006ВИ1 существенно расширяет возможности и этого электронного узла, который, на первый взгляд, кажется «затертым», доисторическим и бесперспективным. На мой взгляд, светодиод дает этой классической электронной схеме на КР1006ВИ1 новую жизнь и возможную популярность среди радиолюбителей.

2.2. Устройство дистанционного управления электролампами

Популярная микросхема КР1006ВИ1 многофункциональна, может работать в электрических схемах в качестве таймера, триггера, генератора импульсов; ее выходной каскад позволяет подключать нагрузку до 200 мА.

Предлагаю дистанционный вариант управления посредством этой замечательной микросхемы, о которой ходят легенды.

На электрической схеме, представленной на рисунке 2.12, показана «защелка», коммутирующая цепь нагрузки посредством маломощного реле К1.

Рис. 1.12. Электрическая схема устройства

Отличительная особенность схемы в дистанционном управлении триггером: для это необходимо только два провода (их общая длина может достигать нескольких метров) – «общий» и идущий к объединенным входам (выводы 2 (триггерный) и 6 (пороговый) микросхемы D1). Относительно большая длина проводов допускается за счет хорошей помехоустойчивости данной микросхемы.

Половина напряжения источника питания через резистор R1 подается в точку соединения триггерного и порогового входов. При таком оригинальном схемном решении КР1006ВИ1 работает как ячейка памяти с запоминанием состояния.

Цепочка из элементов R3C2, соединенная с входом сброса многофункционального таймера D1 (вывод 4), устанавливает схему в состояние выключения и готовности к приему управляющих сигналов при первоначальной подаче питания.

Особенность приведенной схемы такова, что если на входе управления (выводы 2 и 6) установится низкий уровень напряжения, то на выходе (вывод 3 D1) будет высокий уровень, и наоборот: высокий уровень на входе приведет к низкому уровню напряжения на выходе. Для дистанционного управления триггером устанавливается резистор R2, таким образом дополняя схему делителя напряжения.

При замыкании контактов кнопки S1 «вкл» триггер перебрасывается в другое устойчивое состояние – включает нагрузку. При разомкнутых контактах S1 нагрузка отключается.

Индикатор на светодиоде VD1 горит, когда разгрузочный выход (вывод 7) D1 пропускает сигнал, при этом на выводе 3 устанавливается высокий уровень напряжения, ключевой транзистор VT1 (включенный по схеме усилителя тока) открывается и включает реле.

Перейти на страницу:

Андрей Кашкаров читать все книги автора по порядку

Андрей Кашкаров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Занимательная электроника. Нешаблонная энциклопедия полезных схем отзывы

Отзывы читателей о книге Занимательная электроника. Нешаблонная энциклопедия полезных схем, автор: Андрей Кашкаров. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*