Kniga-Online.club
» » » » Мартин Гарднер - Математические головоломки и развлечения

Мартин Гарднер - Математические головоломки и развлечения

Читать бесплатно Мартин Гарднер - Математические головоломки и развлечения. Жанр: Развлечения издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Это было в 1942 году. Вскоре правила игры были опубликованы в газете «Политикен» и гекс стал необычайно популярен в Дании под названием «Многоугольники». Появились в продаже блокноты для игры с заранее напечатанными изображениями досок. «Политикен» из месяца в месяц публиковала задачи и премировала лучшие решения. Игра получила свое нынешнее название гекс лишь в 1952 году, после того как была выпущена фирмой «Паркер».

В 1948 году Джон Нэш, в то время аспирант-математик Принстонского университета, а позже один из самых выдающихся специалистов по теории игр в США, изобрел ту же игру независимо от Хейна. Она быстро увлекла математиков в Принстоне и в Институте высших исследований. Игра обычно называлась «Нэш» или «Ванная». Последнее название в основном было обязано тому, что студенты часто играли на шестиугольных плитках в ванных комнатах.

Читателям, которым захочется поиграть в гекс, следует заранее заготовить листки с начерченными на них досками. Ходы можно отмечать крестиками и кружками. Если вам больше нравится передвигать фишки на «настоящей» доске, можно нарисовать большую доску на листе толстого картона или сложить ее из шестиугольных керамических плиток. Если плитки достаточно большие, то играть можно обычными шашками.

Чтобы понять все тонкости игры в гекс, лучше воспользоваться игровым полем, состоящим из небольшого числа шестиугольников.

На доске 2x2 (четыре шестиугольника) всегда выигрывает тот, кто делает первый ход. На доске 3x3 легко выиграть, если первый ход сделать в центр доски (рис. 34).

Рис. 34

«Черные» могут пойти двумя разными способами, заняв любой из двух шестиугольников, расположенных по обе стороны от центра, и поэтому на третьем ходу обязательно выигрывают.

На доске 4x4 все гораздо сложнее. Начинающий игру выигрывает наверняка лишь в том случае, если он сразу же занимает одну из четырех пронумерованных клеток (рис. 35).

Рис. 35

Сделав первый ход на любую другую клетку, он непременно проиграет. Начав игру с клеток 2 или 3, первый игрок одержит победу на пятом ходу; начав с клеток 1 или 4 — на шестом.

Для доски 5x5 еще можно доказать, что если первый игрок сразу же занимает центральную клетку, то он может выиграть на седьмом ходу. Для досок большего размера анализ становится слишком сложным. Стандартная доска 11 х 11 таит в себе астрономическое число усложнений, и полный анализ игры в гекс на такой доске находится за пределами человеческих возможностей.

Специалисты по теории игр считают гекс особенно интересной игрой по следующей причине. Для игры на стандартной доске не известно, какой тактики необходимо придерживаться, чтобы наверняка обеспечить победу. Однако доказательством от противного можно довольно изящно показать, что для первого игрока всегда существует выигрышная стратегия на доске любого размера! (Доказательство существования обычно позволяет утверждать, что некий объект существует, но не дает никаких указаний, как его найти или построить.) Мы приведем лишь очень краткий набросок доказательства (его можно провести значительно более строго) в том виде, в каком его дал в 1949 году Джон Нэш.

1. Либо первый, либо второй игрок должен выиграть, поэтому либо для первого, либо для второго должна существовать выигрышная стратегия.

2. Предположим, что для второго игрока существует выигрышная стратегия.

3. Тогда первый игрок может обороняться следующим образом.

Сделав произвольный первый ход, он действует затем в соответствии с выигрышной стратегией второго игрока, описанной выше.

Короче говоря, он становится вторым игроком, но с одной лишней фишкой, стоящей где-то на доске. Если, следуя стратегии, он должен будет пойти на ту клетку, которую занял первым ходом, он делает еще один произвольный ход. Если впоследствии игрок должен будет пойти на клетку, которую занял вторым произвольным ходом, он делает третий произвольный ход и т. д. Выбирая так ходы, он играет наилучшим образом, имея на доске одну лишнюю фишку.

4. Лишняя фишка не может затруднить выигрыш первого игрока, потому что лишняя фишка — это всегда преимущество, а не помеха. Таким образом, первый игрок может выиграть.

5. Предположение о существовании выигрышной стратегии для второго игрока приводит к противоречию, и потому его нужно отбросить.

6. Следовательно, выигрышная стратегия может существовать лишь для первого игрока.

Известно много разновидностей игры в гекс, в одной из них каждый играющий пытается заставить противника построить цепь. В соответствии с остроумным доказательством Р. Виндера, аспиранта-математика из Принстона, первый игрок в этой игре всегда может победить, если число клеток на стороне доски четное.

Второй игрок может победить в тех случаях, когда число клеток, прилегающих к стороне, нечетное.

Поиграв немного в гекс, читателю, может быть, захочется поломать голову над тремя задачами, возникающими в процессе игры.

Они изображены на рис. 36.

Рис. 36 Три задачи из игры в гекс.

Вопрос для всех трех задач один и тот же: найти такой первый ход, который обеспечивает «белым» победу.

* * *

В гекс можно играть на самых разных досках, топологически эквивалентных полю, составленному из шестиугольников. В качестве игрового поля можно, например, использовать доску, состоящую из равносторонних треугольников; фишки здесь ставятся в точки пересечения границ между клетками. Обычная шахматная доска изоморфна игровому полю гекса, если предположить, что квадраты связаны по диагонали только в одном направлении (например, в направлении с северо-востока на юго-запад, но не в направлении с северо-запада на юго-восток).

Предлагались и другие, неромбические формы доски для гекса.

Например, создатель теории информации. К. Шеннон предложил игровое поле в форме равностороннего треугольника. Выигрывает тот, кто первым построит цепь, соединяющую все три стороны треугольника. Угловые клетки считаются принадлежащими обеим сторонам угла. Нэш доказал, что побеждает первый игрок. Метод доказательства без труда переносится и на случай треугольного игрового поля. (Здесь также выигрывает тот, кто начинает.)

Несколько предложений было внесено с целью уменьшить слишком сильное преимущество первого игрока. Так, первого игрока можно лишить права начинать с короткой диагонали. Решая, кому принадлежит победа, можно учитывать сделанное выигравшим число ходов. Открывая игру, первому игроку разрешается делать лишь один ход, после чего каждый из игроков по очереди делает по два хода за один раз.

Напрашивается предположение, что если на доске размером n х (n + 1) — например 10 х 11 — начинающий игру берет себе более удаленные друг от друга стороны, то относительные преимущества игроков должны уравниваться. К сожалению, обнаружилась очень простая стратегия, с помощью которой второй игрок наверняка одерживает победу. Эта стратегия основана на зеркальной симметрии относительно центральной оси. Если второй игрок — это вы, то представьте себе, что все клетки разбиты на пары так, как показано на рис. 37.

Рис. 37 Как должен расставить свои фишки второй игрок на «укороченной» доске, чтобы выиграть партию в гекс.

Куда бы ни сделал ход противник, вы делаете ход на вторую клетку, обозначенную той же буквой, что и занятая им клетка. Поскольку расстояние между вашими сторонами меньше, ваш проигрыш невозможен!

Несколько слов об общей стратегии игры в гекс. По сообщениям многих читателей, они были разочарованы, обнаружив, что первый игрок очень легко одерживает победу, если занимает центральную клетку и продолжает от нее строить цепь до краев доски. Эти читатели полагают, что запереть первого игрока невозможно, поскольку он всегда может сделать ход, присоединив к своей цепочке одну из двух клеток. Сторонники подобной точки зрения просто не обладают достаточным опытом игры в гекс, иначе бы они обнаружили, что для того, чтобы запереть противника, совсем не обязательно занимать клетки, примыкающие к концам цепи. Игра в гекс намного хитрее, чем кажется с первого взгляда. Блокирование цепи часто происходит внезапно, в результате действий, не имеющих, казалось бы, к этому ни малейшего отношения.

Более изощренная стратегия основана на следующем методе.

Сделайте первый ход в центр, а затем постарайтесь занять отдельные клетки по диагонали или по вертикали так, как это сделано на рис. 38.

Рис. 38

Если ваш противник помешает вам достроить вертикаль, вы придете по диагонали. Если он попытается помешать вам достроить диагональ, вы сделаете ход, заняв клетку на вертикали.

Перейти на страницу:

Мартин Гарднер читать все книги автора по порядку

Мартин Гарднер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Математические головоломки и развлечения отзывы

Отзывы читателей о книге Математические головоломки и развлечения, автор: Мартин Гарднер. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*