Удивительные числа Фибоначчи - Александр Иванович Бородулин
Тринадцать умножим на восемь. Десять на восемь (восемьдесят), и три на восемь (двадцать четыре). Сто четыре. Да прибавим восемь на пять (сорок). Получается сто сорок четыре.
Теперь дополним ряд. Пятьдесят пять плюс тридцать четыре. Восемьдесят девять. Это одиннадцатое число. К нему опять прибавим пятьдесят пять. Сначала добавим двадцать. Получится сто девять. Потом добавим тридцать. Получится сто тридцать девять. На калькуляторе было бы быстрее, но не так интересно! Осталось добавить пять. Единица из пятерки уйдет на доведения до ста сорока, да четыре еще останется. Да! Сто сорок четыре. Мы были правы! Можно определять значения чисел из ряда «Фибоначчи» по номеру, используя сложение произведений чисел с соответствующими номерами, если эти номера соседние.
Но вспомним про нашу ошибку, когда мы складывали двадцать четыре (восемь умножали на три) и три (три умножали на один). Стоп! А если бы мы не складывали, а вычитали, то получили бы двадцать один. А это число входит в ряд «Фибоначчи». Что же получается? Числа можно получать не только сложением, но и вычитанием! И опять-таки — это всего лишь предположение!
Но, прежде чем начать проверку, давайте выпишем все, на текущий момент, известные нам числа «Фибоначчи». Начнем с нулевого.
Ноль, один, один, два, три, пять, восемь, тринадцать, двадцать один, тридцать четыре, пятьдесят пять, восемьдесят девять, сто сорок четыре.
Число номер семь (тринадцать) умножим на число номер пять (пять). Число номер пять умножим на число номер три (два). И вычтем второе произведение из первого. Шестьдесят пять минус десять. Получится пятьдесят пять. Число номер десять. Мы брали номера семь, пять, пять, три. Половина их суммы составит десять. Вот какое интересно свойство этих забавных чисел мы только что определили! Это было не легко, но интересно!
И надо полагать, что на этом чудесные свойства чисел «Фибоначчи», далеко не исчерпаны!
А если нам понадобится «перепрыгивать» не только через два или через три числа? Да причем используя множитель, которые не является числом из ряда «Фибоначчи».
Давайте попробуем, хотя мы уже сказали, что множителями могут быть только числа из ряда «Фибоначчи». Но посмотрим внимательно на число под номером десять (пятьдесят пять). Это же пять умноженное на одиннадцать! Правда ведь? А тридцать четыре? Это же три умноженное на одиннадцать с добавленной единичкой. А восемьдесят девять? Это же восемь умноженное на одиннадцать с добавленной единичкой. И даже сто сорок четыре — это тринадцать умноженное на одиннадцать с добавленной единичкой! А если двадцать один умножить на одиннадцать? Получится двести тридцать один. Является ли это числом из ряда «Фибоначчи» или близким к нему? Придется сложить сто сорок четыре и восемьдесят девять. Двести тридцать три. То есть достаточно число номер восемь (двадцать один) умножить на одиннадцать, прибавить к результату число номер три (два), и получим число номер тринадцать. То есть, число некоторого номера умножаем на одиннадцать, добавляем число меньшего на пять номера, и получаем число большего на пять номера!
Значит множителями могут быть не только числа из ряда «Фибоначчи?» Оказывается, что не только!
Существует еще один ряд чисел.
Один, три, четыре, семь, одиннадцать, восемнадцать, двадцать девять, и так далее. Если приглядеться, то можно обнаружить, что эти числа, также, образуются по правилу: следующее число равно сумме текущего и предыдущего. Мы взяли из этого ряда пятое по порядку число и применили его в качестве множителя. Это дало нам возможность «прыгать» на пять чисел вперед!
А сколько еще удивительных свойств чисел «Фибоначчи» вы, Ребята, можете открыть самостоятельно!