Неизвестен Автор - Физические эффекты и явления
Пойнтингом было установлено,что при закручивании стальных и медных проволок они не только закручиваются, но также упруго удлиняются и увеличиваются в объеме. Удлинение проволоки примерно пропорционально квадрату угла закручивания: при заданном значении угла удлинение пропорционально квадрату радиуса. Диаметр проволоки при закручивании уменьшается, величина радиального сжатия при этом пропорциональна квадрату угла закручивания. Эффект был открыт давно, и еще Пойнтингом было доказано,что удлинение при закручивании не связано с изменениями модуля ЮНГА -это позволяет предполагать,что свойства материала остаются без изменений.
Эффект Пойтинга нашел применение в машиностроении.
Пример тому А.с.546456: Способ демонтажа прессовых сое
динений деталей типа вал-втулка путем воздействия на
охватываемую деталь усилием выпрессовки, отличающийся
тем, что с целью снижения усилия выпресовки, например,
подшипников качения с вала, перед выпрессовкой,охваты
ваемую деталь,например,вал, скручивают.
Малая величина эффекта позволяет указать на возможность его применения в некоторых областях измерительной техники. Калиброванные изменения радиуса- это переменный калибр толщины: радиальное сжатие с одновременным удлинением -это изменение (хотя и малое,но надежно калибрированное) электросопротивления проволоки и т. д.
2.2 Передача энергии при ударах. Эффект Александрова.
Коэффициент передачи энергии от ударяющего тела к ударяющему зависит от отношения их масс-чем больше это отношение,тем больше передаваемая энергия. Поэтому в машинах ударного действия всегда старались учесть это соотношение, по крайней мере,до 1954 года,когда Е.В.Александровым было установлено, что с ростом соотношения масс коэффициент передачи растет лишь до определенного критического значения,определяемого свойствами и конфигурацией соударяющихся тел (удар упругий) При увеличении отношения масс соударяющихся тел сверх критического коэффициента передачи энергии определяется не реальным соотношением масс а критическим значением этого отношения.
Соответственно,коэффициент востановления определяется формой и массой соударяющихся тел и степенью рассеяния энергии. Очевидно,этот эффект обязательно должен учитываться при проектировании машин ударного действия. Наглядная иллюстрация к тому:
А.с.. 203557 Механизм для воздействия на твердое тело
ударной нагрузкой,содержит два или более соударяющихся
элементов,причем один из них является рабочим, непос
редственно воздействующим на твердое тело, отличающийся
тем,что в нем предусмотрено средство для создания перед
каждым соударением элементов дополнительного зазора в
системе "соударяющиеся элементы-твердое тело" и один
или несколько из соударяющихся элементов, за исключени
ем рабочего, выполнены из материала с меньшим модулем
упругости, чем материал элемента.
На основе открытия Александрова создан так называемый механический полупроводник,в котором передача энергии практически осуществляется только в одном направлении, независимо от жесткости опоры. На этой основе уже создан новый отбойный молоток,который в два раза легче серийного и обладает большой производительностью.Теоретически доказана возможность и целесообразность бурения на глубинах до 100 м без погружения бурильной машины в скважину.
А.с..447496: Наддолотный утяжелитель,состоящий из несо
единенных между собой свободно установленных на буриль
ной колонне грузовых трубчатых элементов, отличающихся
тем,что с целью усиления ударных нагрузок на доло
то,каждый вышележащий грузовой трубчатый элемент имеет
большую массу по сравнению с нижележащими.
2.3. Эффект радиационного распухания металла.
Как бы не пытались исправить деформированную деталь, она все равно вспомнит свойдефект,частично востановит прежнюю покоробленность.Виной тому внутреннее напряжение в материалах. Они существуют всегда.Отжиг ликвидирует их в металлах, но при остывании, которое идет не равномерно,внутренние напряжения хотя и ослабленные,появляются вновь.С помощью холодной правки идеально выгладить стальное изделие невозможно. Здесь на помощь может прийти радиоактивное излучение.
При облучении нейтроны врываются в недра металла и, сталкиваясь с ядрами ионов (или атомов) выбивают их из узлов кристалической решотки.Те,в свою очередь,ударяясь о другие ионы, либо остаются на месте,либо оставляют эти места свободными. Большая же часть ионов внедряется в междоузлия.Обрабатываемая часть изделия при этом увеличивает свой объем.
Так вот, если изогнутую деталь подвергнуть радиоактивному облучению с выгнутой стороны, то внедрившиеся частицы, расталкивая ионы и атомы кристаллической решотки, начнут разгибать деталь. Изменения кривизны можно контролировать обычным измерительным прибором,следить за ней постоянно во время правки и закончить процесс точно на "нуле". Причем править можно в сборе, на готовой машине.
Действие радиации легко расчитать. Известно,что максимальное изменение объема стали при нейтронном облучении составляет 0,3% . Например,если подвергнуть облучению только средний участок стальной детали длиной 1000мм и высотой 50мм ,то устраняется прогиб в 2,5мм.
Не металические и композиционные материалы при облучении изменяют свой объем еще сильней.Например,пластмассы - до 24% .
С помощью радиации мы не просто выпрямляем деталь, а перераспределяем внутренние напряжения до нового равновесного состояния массой внедрившихся частиц. Поэтому изделие самопроизвольно уже не разогнется. Этот способ защищен авторским свидетельством . 395147 (см.18.5.1)
2.4. С п л а в ы с п а м я т ь ю .
Некоторые сплавы металлов: титан-никель,золото-кадмий, медь-алюминий обладают "эффектом памяти". Если из такого сплава изготовить деталь,а затем ее деформировать,то после нагрева до определенной температуры деталь востанавливает в точности свою первоначальную форму. Из всех известных сейчас науке сплавов "с памятью" наиболее уникальны по спектру свойств сплавы из титана и никеля: сплавы ТН (за рубежом они известны под названием нитинол). Сплавы ТН развивают большие усилия при восстановлении своей формы.
Этим воспользовались в Институте металлургии им. А.А.Бойкова. После того, как нитинолу дадут "запомнить" слежную форму, изделие вновь превращается в плоский лист. На его поверхность наносят обычными приемами - с помощью проката, напыления, сварки взрывом или как-либо иначе слой любого другого металла или сплава.
Такой металлический слоеный пирог после нагревания вновь превращается в деталь сложной конфигурации. Таким способом можно, в принципе создавать многослойные изделия любой формы, которые обычными приемами сделать никак нельзя. ТН сплавы легко обрабатываются, из них изготавливают всевозможные изделия: листки, прутки, поковки. Кроме того, эти сплавы сравнительно экономичны, коррозионностойки, хорошо гасят вибрации. Из нитинола американцы сделали антенны для спутников. В момент запуска антенна свернута, занимает очень мало места. В космосе же нагретая солнечными лучами, она принимает сложнейшие формы, приданные ей еще на Земле.
При соединении полых деталей с каркасом заклепки из сплава ТН существенно упростят дело. Вставили заклепку "с памятью", нагрели ее, она "вспомнила", что уже была некогда расплющена, и приняла свою первоначальную форму. Сплавы "с памятью" открывают новые возможности в деле непосредственного преобразования тепловой энергии в механическую. Нагретую ТН-проволочку свернули в спираль. Охладили, подвесили гирькупружинка растянулась. Если теперь через проволочку пропустить электрический ток, пружинка нагреется и восстановит свою форму - гирька поползет вверх, выключаем ток - гирька вновь спускается и т.д. По сути дела - это искуственный мускул. На этом принципе можно делать двигатели нового типа, использующие даровую энергию Солнца.
Перспективы для сплавов "с памятью" самые заманчивые: тут и тепловая автоматика, быстродействующие датчики, термоупругие элементы, реле, приборы контроля, тепловые домкраты, напряженный железобетон и многое другое.
Л И Т Е Р А Т У Р А
- - - - - - - - -
К 2.1.1. М.И.Каганов, В.Д.Нацик, Электроны тормозят дислока
цию "Природа", 1976, н'5, стр.23-24: н'6, стр.131-139.
К 2.1.2. В.И.Спицын, О.А.Троицкий, Электропластическая дефор
мация металлов, "Природа", 1977.
К 2.1.3. Ю.Осипьян, И.Савченко, "Письма в ЖЭТФ, вып.7, н'4.
К 2.1.4. С.И.Ратнер, Ю.С.Данилов, Изменение пределов пропор
циональности и текущести при повторном нагружении,
"Заводская лаборатория", 1950, н'4.
Ф.Ходж Теория идеально пластических тел, М.. "ИЛ", 1956
К 2.4. И.И.Карнилов и др., Никелид титана и другие сплавы с
эффектом "памяти", "Наука", 1977.
3.1. Тепловое расширение вещества.
Все вещества (газы, жидкости, твердые тела) имеют атомно-молекулярную структуру. Атом, равно как и молекулы, во всем диапозоне температур находятся в непрерывном хаотическом движении, причем, чем выше температура обьема вещества, тем выше скорость перемещения отдельных атомов и молекул внутри этого обьема (в газах и жидкостях) или их колебания - в кристаллических решетках твердых тел. Поэтому с ростом температуры увеличивается среднее расстояние между атомами и молекулами, в результате чего газы, жидкости и твердые тела расширяются - при условии, что внешнее давление остается постоянным. Коэффиценты расширения различных газов близки между собой (около 0,0037 град в степени "-1"; для жидкостей они могут различаться на порядок (ртуть - 0,00018 град в степени "-1", глицерин - 0,0005 град в степени "-1", ацетон - 0,0014 град в степени "-1", эфир - 0,007 град в степени "-1"). Величина теплового расширения твердых тел определяется их строением. Структуры с плотной упаковкой (алмаз, платина, отдельные металлические сплавы) мало чувствительны к температуре, рыхлая, неплотная упаковка вещества способствует сильному расширению твердых тел (аллюминий, полиэтилен).