Kniga-Online.club
» » » » Неизвестен Автор - Курс общей астрономии

Неизвестен Автор - Курс общей астрономии

Читать бесплатно Неизвестен Автор - Курс общей астрономии. Жанр: Прочее домоводство издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

§ 50. Второй закон Кеплера

Возьмем прямоугольную систему координат, начало которой находится в центре притяжения, а плоскость ху совпадает с плоскостью орбиты тела.

Проектируя ускорение и силу на координатные оси х и у (рис. 31), напишем основное уравнение динамики (2.14) в следующем виде: Умножая эти уравнения соответственно на у и х и вычитая первое из второго, получим или Поскольку сила центральная, то имеет место соотношение Поэтому или

(2.21)

В полярных координатах х = r cos q, у = r sin q, где r - расстояние точки от начала координат (радиус-вектор точки), а q полярный угол (истинная аномалия). Если перейти от прямоугольной системы координат к полярным координатам, то выражение (2.21) будет иметь вид

(2.22)

т.e. площадь, описанная радиусом-вектором за единицу времени, есть величина постоянная. Это есть математическое выражение второго закона Кеплера (см. § 40). § 51. Третий (уточненный) закон Кеплера

При круговом движении ускорение w = w2r, где угловая скорость , а Т - период обращения по окружности. Следовательно, ускорение Если рассматривать относительное движение по кругу небесного тела с массой т вокруг центрального тела с массой M, то согласно уравнению (2.17) относительное ускорение Так как w и wот - одно и то же ускорение, то, приравняв их правые части, получим

(2.23)

Если рассматривать движение небесного тела по эллипсу, то получится соотношение, аналогичное (2.23), только в нем радиус круга r заменится на большую полуось а, а T будет означать период обращения тела по эллипсу. Напишем это соотношение для двух тел, массы которых т1 и т2 , большие полуоси их эллиптических орбит а1 и a2 , а периоды их обращений вокруг их центральных тел с массами М1 и М2 обозначим через T1 и T2 . Тогда откуда

(2.24)

Это точное выражение третьего закона Кеплера. Если рассматривать движение двух планет вокруг Солнца, т.e. вокруг одного и того же тела (М1 = М2 ), и пренебречь массами планет (т1 " m2 = 0) в сравнении с массой Солнца, то получим формулу (2.7), выведенную Кеплером из наблюдений: Так как массы планет в сравнении с массой Солнца незначительны, то формула Кеплера достаточно хорошо согласуется с наблюдениями. Формулы (2.23) и (2.24) играют большую роль в астрономии: они дают возможность определять массы небесных тел (см. § 58).

§ 52. Понятие о возмущенном движении

Если бы какое-нибудь тело Солнечной системы притягивалось только Солнцем, то оно двигалось бы вокруг Солнца точно по законам Кеплера. Такое движение, соответствующее решению задачи двух тел, называют невозмущенным. В действительности же все тела Солнечной системы притягиваются не только Солнцем, но и друг другом. Поэтому ни одно тело в Солнечной системе не может точно двигаться по эллипсу, параболе, гиперболе и тем более по кругу. Отклонения в движениях тел от законов Кеплера называются возмущениями, а реальное движение тел - возмущенным движением. Возмущения тел Солнечной системы имеют очень сложный характер, и их учет чрезвычайно труден, хотя они сравнительно и невелики, так как массы этих тел по сравнению с массой Солнца очень малы (общая их масса меньше массы Солнца). Возмущения можно рассматривать как различие между положениями светила при возмущенном и невозмущенном движениях, а возмущенное движение тела представлять как движение по законам Кеплера с переменными элементами его орбиты. Изменения элементов орбиты тела вследствие притяжения его другими телами, помимо центрального, называются возмущениями, или неравенствами элементов. Возмущения элементов делятся на вековые и периодические. Вековые возмущения тел Солнечной системы зависят от взаимного расположения их орбит, которое в течение очень больших промежутков времени изменяется очень мало. Поэтому вековые возмущения элементов происходят в одном и том же направлении и величина их приблизительно пропорциональна времени. Вековым возмущениям подвержены два элемента орбиты - долгота восходящего узла < и долгота перигелия p. Периодические возмущения зависят от относительного положения тел на их орбитах, которое при движении по замкнутым орбитам повторяется через определенные промежутки времени. Поэтому периодические возмущения элементов орбит происходят попеременно то в одном, то в противоположном направлении, и им подвержены в той или иной степени все элементы орбит. Так как у больших планет невозмущенные орбиты - замкнутые кривые (эллипсы), а вековым возмущениям подвержены только долготы узлов и долготы перигелиев, то планетная система должна в ближайшем будущем остаться в существенных своих чертах такой же, какой она является в настоящее время. Однако вопрос об устойчивости Солнечной системы в течение чрезвычайно длительных промежутков времени, например, в течение нескольких миллиардов лет, остается нерешенным.

§ 53. Понятие о возмущающей силе

Пусть имеются три небесных тела: Солнце С с массой М, планета P1 с массой m1 на расстоянии r1 от центра Солнца и планета Р2 с массой т2 на расстоянии r2 от центра Солнца и на расстоянии r от планеты Р1 (рис. 32). Все три тела действуют друг на друга по закону всемирного тяготения Ньютона. Солнце получает ускорение по направлению СР2 от планеты P1 и ускорение по направлению СР2 от планеты Р2 . Рассмотрим движение планеты P1 относительно Солнца. В этом случае на планету P1 будут действовать силы, вызывающие следующие ускорения:

по направлению P1C,

по направлению Р1Р2 , и

по направлению, параллельному Р2С . Первое ускорение w есть ускорение относительного движения, вызванное притяжением Солнца; оно обусловливает движение планеты P1 вокруг Солнца но законам Кеплера.

Ускорения w' и w" составляют ускорение возмущающей силы и обусловливают отклонения в движении планеты P1 от законов Кеплера. Возмущающая сила, следовательно, состоит из двух сил: из силы действия планеты P2 на планету P1 и из силы действия планеты Р2 на Солнце. Так как ускорение w" откладывается в сторону, противоположную w2 , то возмущающая сила есть геометрическая разность действий возмущающего тела на планету и на Солнце. Как видно из рис. 32, возмущающая сила (возмущающее ускорение) в общем случае не направлена к возмущающему телу, т.е. к планете Р2 . Возмущающая сила будет направлена точно к возмущающему телу Р2 только в том случае, если тела P1 и P2 находятся на одной прямой с Солнцем и притом оба по одну сторону от него (в порядке CP1P2 или CP2P1 ). Если же тела P1 и Р2 находятся на одной прямой (P1CP2 ) с Солнцем, но по разные стороны от него, то возмущающая сила направлена от возмущающего тела. Величина и направление возмущающей силы вследствие движения тел непрерывно меняются.

§ 54. Сила, возмущающая движение Луны

Для Луны центральным телом является Земля, а основным возмущающим телом Солнце. Притяжения планет также влияют на движение Луны, но вызываемые ими возмущения сравнительно невелики и во много раз меньше возмущений, вызываемых Солнцем. Притяжение Солнца сообщает Луне ускорение где М - масса Солнца, a r1 - расстояние Луны от Солнца. Земля же притягивает Луну с силой, сообщающей Луне ускорение где т - масса Земли, а r - расстояние Луны от Земли. Разделив первое ускорение на второе, получим Так как = 333000 (см. § 58), а то сила притяжения Луны Солнцем в два с лишним раза больше силы притяжения Луны Землей. Но на движение Луны относительно

Земли влияет не сила притяжения ее Солнцем, а разность притяжении Солнцем Луны и Земли (см. § 53). А так как ускорение Земли от притяжения Солнцем где а - расстояние Земли от Солнца, то, следовательно, возмущающее ускорение w1 движения Луны равно разности ускорений w и w'. Наибольшего значения это ускорение w1 , а следовательно, и возмущающая сила, достигает тогда, когда Луна L1 находится между Солнцем С и Землей Т (рис. 33). В этом случае возмущающее ускорение Так как r мало по сравнению с а, то а - r мало отличается от а, и скобки в знаменателе можно заменить через а2, а в числителе пренебречь величиной r2. Тогда В положении L3 (рис. 33) ускорение, сообщаемое Луне Солнцем, почти такое же. Действительно, в этом случае Таким образом, сила, возмущающая движение Луны, обратно пропорциональна не квадрату, а кубу расстояния до возмущающего тела (Солнца), и величина ее составляет: т.е. приблизительно силы притяжения Луны Землей. В положении L1 возмущающая сила Солнца отдаляет Луну от Земли, а в положении L3 отдаляет Землю от Луны. В положениях L2 и L4 возмущающая сила несколько сближает Луну и Землю, так как силы, с которыми Солнце притягивает их, в этих случаях равны по величине, а направления сил сходятся под острым углом.

§ 55. Приливы и отливы

Так как размеры Земли не бесконечно малы по сравнению с расстояниями до Луны и Солнца, то, независимо от формы Земли, силы лунного и солнечного притяжения на разные точки Земли неодинаковы. В результате появляется возмущающая сила, действующая на эти точки сообразно различным расстояниям и направлениям от этих точек до притягивающего тела. Если бы Земля была абсолютно твердым телом, т.е. ее точки не могли бы изменять своего положения относительно центра Земли, то под действием этих возмущающих сил в теле Земли появились бы только едва заметные натяжения. Но Земля не абсолютно твердое тело, поэтому действие возмущающих сил на некоторые части земной поверхности вызывает явления, которые называются приливами и отливами. Допустим для простоты, что твердая поверхность Земли со всех сторон равномерно покрыта океаном (рис. 34). Луна притягивает к себе каждую частицу твердой поверхности Земли и каждую каплю воды в океане, сообщая им ускорения обратно пропорциональные квадрату расстояния между частицей и центром Луны. Равнодействующая ускорений, сообщаемых твердым частицам, проходит через центр Земли Т и равна где m - масса Луны, а r - расстояние центра Луны от центра Земли. Что же касается воды океана, то в точке A ускорение больше, чем wT , а в точке В оно меньше wT , так как

Перейти на страницу:

неизвестен Автор читать все книги автора по порядку

неизвестен Автор - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Курс общей астрономии отзывы

Отзывы читателей о книге Курс общей астрономии, автор: неизвестен Автор. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*