Неизвестен Автор - Курс общей астрономии
§ 153. Атмосферы и общее строение звезд
Спектроскопическими методами удается наблюдать излучение главным образом фотосфер и в некоторых случаях хромосфер звезд. Для изучения физических условий в звездных атмосферах в принципе должны быть применены те же самые методы, что и для исследования солнечной фотосферы. Однако из наблюдений звезды, как правило, невозможно установить распределение яркости по ее диску. Поэтому определение изменения температуры с оптической глубиной может быть выполнено только теоретически. Как мы видели на примере Солнца, конкретные свойства фотосферы зависят от эффективной температуры, массы и радиуса звезды. В § 120 было показано, что шкала высоты находится по формуле где R - универсальная газовая постоянная, а ускорение силы тяжести (R* - радиус звезды): Если бы температуры и массы всех звезд были одинаковы, протяженность их атмосфер была бы пропорциональна квадрату радиуса. В действительности, благодаря наличию зависимости "масса - светимость - радиус" она оказывается пропорциональной R* в степени несколько выше первой. Отсюда следует, что звезды верхней части диаграммы спектр - светимость с наибольшими радиусами обладают самыми протяженными атмосферами. У гигантов поздних спектральных классов протяженность фотосфер больше, чем у Солнца, в сотни раз, а у сверхгигантов - в тысячи и десятки тысяч раз. Поэтому если протяженность солнечной фотосферы всего лишь несколько сотен километров, то у звезд главной последовательности ранних спектральных классов она достигает тысячи километров, у гигантов - десятков тысяч, а у сверхгигантов - миллионов километров. С другой стороны, белые карлики, масса которых чуть меньше солнечной, по своим размерам примерно в сто раз меньше Солнца и протяженность их атмосфер в десять тысяч раз меньше солнечной и составляет около десяти метров (одна миллионная доля радиуса!) С протяженностями атмосфер тесно связан вопрос о наличии конвективных оболочек у звезд. Как мы видели, у Солнца имеется подфотосферная конвективная зона. При не слишком высоких температурах одно лучеиспускание без конвекции не может перенести всей той энергии, которая должна выйти из недр звезды и попасть в атмосферу, чтобы высветиться в пространство. Кроме того, в "холодной" атмосфере возникновение конвекции облегчается тем, что она способна эффективнее переносить энергию: поднимающийся из глубоких слоев элемент конвенкции содержит ионизованный водород, который в верхних, холодных слоях отдает не только тепловую, но и, становясь нейтральным, ионизационную энергию. Поэтому у звезд более холодных, чем Солнце, водородные конвективные оболочки еще протяженнее, а сама конвекция сильнее. С другой стороны, у звезд горячее Солнца, у которых водород ионизован всюду в атмосфере, возникновение конвекции затруднено и конвективные зоны не возникают, поскольку лучеиспускание обеспечивает необходимый перенос энергии. Теперь рассмотрим плотности атмосфер различных звезд. Для определения плотности r солнечной фотосферы мы воспользовались в § 121 тем соображением, что количество вещества, содержащееся в слое атмосферы толщиной Н, должно обладать заметной непрозрачностью (иметь оптическую толщину t " 1). Иными словами, Если бы непрозрачность вещества во внешних слоях у всех звезд была одинакова, то плотности были бы обратно пропорциональны протяженностям Н. Но непрозрачность вещества сильно зависит от температуры и, что особенно важно, от давления, определяемого силой тяжести. Чем больше сила тяжести, а следовательно, и давление, тем сильнее непрозрачность. Однако мы только что видели, что протяженность как раз обратно пропорциональна силе тяжести. Поэтому произведение k Н, входящее в формулу (9.16), должно меняться мало. Это объясняет, почему плотности звездных фотосфер различаются между собой значительно меньше, чем их протяженности. Действительно, фотосферы гигантов и сверхгигантов всего лишь раз в 10 разреженнее солнечной, в то время как наружные слои белых карликов только в 10 раз плотнее. Наиболее разреженными являются атмосферы гигантов и "холодных" сверхгигантов. Их фотосферы в сотни тысяч раз разреженнее солнечной, что соответствует условиям в верхних слоях солнечной хромосферы. Таким образом, в этом разделе мы рассмотрели важнейшие особенности и строение нормальных звезд, занимающих различное положение на диаграмме Герцшпрунга Рессела. В качестве итога в табл. 12 приведены характеристики наиболее типичных звезд. Три первые из них, включая Солнце, расположены на главной последовательности, одна (класса В0) существенно выше, а другая (класса М0) существенно ниже Солнца. Четвертая звезда - типичный красный гигант с массой несколько большей, чем у Солнца. Наконец последняя звезда - представитель белых карликов, занимающих самое нижнее положение на диаграмме спектр - светимость.
Следует иметь в виду, что все числа, приведенные в табл. 12, как правило, являются результатом грубых предварительных расчетов, к тому же округленных для удобства запоминания.
2. ПЛАНЕТАРНЫЕ ТУМАННОСТИ
Известны звезды, которые являются как бы наглядной иллюстрацией того, что красные гиганты могут превращаться в белые карлики. Нас они интересуют еще и потому, что окружены горячей газовой оболочкой, свойства которой напоминают газовые туманности, рассматриваемые в следующей главе. Но внешнему сходству с дисками планет, наблюдаемыми в телескоп, они называются планетарными туманностями (рис. 200). В центре их всегда можно заметить ядро - горячую звезду, спектр которой напоминает спектр звезд Вольфа - Райе (см. стр. 438) или звезд класса О.
Самым близким и крупным из подобных объектов является планетарная туманность Хеликс в созвездии Водолея, видимый размер которой только вдвое меньше Луны. При расстоянии в 700 пс это соответствует истинным размерам туманности почти в 3 пс. Очень известной также является кольцевая туманность в созвездии Лиры. Большинство планетарных туманностей, которых в настоящее время найдено около 1000, имеют значительно меньшие размеры, в среднем 0,05 пс, и концентрируются преимущественно к центру Галактики, а не к ее плоскости. Спектры самих планетарных туманностей (рис. 201) представляют собой слабый континуум, на фоне которого видны яркие эмиссионные линии, причем сильнее всего выделяются запрещенные линии однажды и дважды ионизованных кислорода и азота (особенно небулярные линии N1 и N2), линии водорода и нейтрального гелия. По внешнему виду планетарных туманностей, которые обычно имеют симметричную форму и часто выглядят кольцами, можно заключить, что они представляют собой оболочку из сильно разреженного ионизованного газа, окружающую звезду и имеющую, возможно, форму тороида. По смещениям линий в спектре этих оболочек обнаружено, что они расширяются в среднем со скоростью в несколько десятков километров в секунду.
Рис. 201. Бесщелевой (в середине) и щелевой (справа) спектры планетарной туманности NGC 6543, изображенной слева. Цифры - длины волн в ангстремах.
Полное количество энергии, излучаемой всей планетарной туманностью, в десятки раз больше, чем излучение ядра в видимой области спектра. Поскольку центральная звезда очень горячая и обладает температурой во много десятков тысяч градусов, максимум ее излучения лежит в невидимой ультрафиолетовой области спектра. Жесткое излучение ядра ионизует разреженный газ туманности и нагревает его до температуры, достигающей одного-двух десятков тысяч градусов. Вместо него атомы туманности испускают видимое излучение, спектр которого содержит наблюдаемые эмиссионные линии и слабое непрерывное свечение. По-видимому, планетарные туманности - определенная стадия эволюции некоторых звезд, возможно, похожих на неправильные переменные типа RV Тельца. В стадии планетарной туманности звезда сбрасывает с себя оболочку и обнажает свои горячие внутренние слои. Судя по скорости расширения оболочки, этот процесс должен происходить очень быстро (около 20 000 лет). Существенные изменения за это время могут иметь место и внутри звезды. Есть основания полагать, что, пройдя стадию планетарных туманностей, некоторые звезды превращаются в белые карлики.
3. ДВОЙНЫЕ ЗВЕЗДЫ
Часто на небе встречаются две или несколько близко расположенных звезд. Некоторые из них на самом деле далеки друг от друга и физически не связаны между собой. Они только проектируются в очень близкие точки на небесной сфере и потому называются оптическими двойными звездами. В отличие от них, физическими двойными называются звезды, образующие единую динамическую систему и обращающиеся под действием сил взаимного притяжения вокруг общего центра масс. Иногда наблюдаются объединения трех и более звезд (тройные и кратные системы). Если компоненты двойной звезды достаточно удалены друг от друга, так что видны раздельно (могут быть разрешены), то такие двойные называются визуально двойными. Двойственность некоторых тесных пар, компоненты которых не видны в отдельности, может быть обнаружена либо фотометрически (затменные переменные звезды), либо спектроскопически (спектрально-двойные).