Kniga-Online.club
» » » » Слова и смыслы. Мировоззрение и картина мира: ассоциативный словарь - Сергей Николаевич Белкин

Слова и смыслы. Мировоззрение и картина мира: ассоциативный словарь - Сергей Николаевич Белкин

Читать бесплатно Слова и смыслы. Мировоззрение и картина мира: ассоциативный словарь - Сергей Николаевич Белкин. Жанр: Публицистика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
Представим себе сказочный банк, который дает клиентам сказочный процент: 100  % годовых. Положили рубль – через год получили 2 рубля. Что банк все это время делает с вашими деньгами, нам неизвестно, но как-то он с их помощью зарабатывает еще больше. Вы тоже хотите больше и предлагаете банку начислить вам не 100  % в конце года, а 50  % через шесть месяцев, потом снова – 50  % через шесть месяцев. И тогда вы, получив свои проценты через полгода (50 копеек), добавляете их – если банк не против – к вкладу, и во втором полугодии у вас на счете лежит уже 1,5 рубля. И на них начисляются снова 50  %, так что к концу года получится 1,5 + 0,75 = 2,25  руб. То есть, разбив период вклада на две части и добавив начисленный полтинник к сумме вклада, мы заработали дополнительно 25 копеек. Войдя во вкус, вы просите банк разбить период на три части и получать трижды по 33,3  %. И тогда в конце года у вас получится 1,33 + 0,44 + 0,59 = 2,36  руб. Если продолжать делить период на все более и более короткие отрезки (если в банке тоже сидят сумасшедшие, можно доторговаться до разбиения не только на 365 дней, а вести начисление каждый час…), то итоговая сумма будет понемногу, но увеличиваться: при разбиении на пять периодов получится около 2,49  руб., на десять – 2,59  руб., на сто – 2,7. В общем, чем больше будет отрезков, тем ближе итоговая сумма будет к числу 2,718, то есть к числу е. При таком росте (денег, бактерий, элементарных частиц и т.  д.) их исходное количество возрастет в е раз. Если банковский процент составит 300  %  – в 3е раз, если банковский процент 50  %  – получим е в степени 1/2. А если наш 100  % вклад продолжится пять лет кряду, мы в итоге получим е5 = 148,41 (е в пятой степени равно 148,41).

Это число возникает часто, но не всегда. Ведь если бы мы не просили банк уменьшать интервалы и – главное!  – не стали бы добавлять к имеющейся сумме того, что успело нарасти, то наш рубль просто удваивался каждый год: 1, 2, 4, 8 и т.  д. Выявим главную особенность именно такого роста. Оно состоит в том, что размер суммы, на которую начисляются проценты, не только сам увеличивается, но и увеличивает скорость, с которой она растет! Казалось бы, эту скорость определяют те 100  %, которые были с самого начала. Но это не так: 100  % остаются неизменными, а скорость растет. Удивительно, но это число возникает повсюду, где скорость роста определяется не только, например, временем, но и самим растущим числом. Это воистину число естественное, природное.

История его нахождения извилиста. На протяжении лет ста математики вплотную подходили к тому, чтобы его вычислить. В неявном виде это число присутствовало в таблицах логарифмов, изданных Непером в 1618 году. Потом оно – тоже неявно – присутствовало в определении Сент-Винсентом площади сектора гиперболы в 1647 году. Гюйгенс в 1661 году установил связь между гиперболической функцией и логарифмом, он был, как никто близок к тому, чтобы выловить это число, но не сделал этого. Никола Меркатор и  Якоб Бернулли тоже были близки. Наконец, Лейбниц в письме к  Гюйгенсу в 1690 году выявил это число и ввел для него буквенное обозначение (b), но еще не придал ему численного значения. И только великий Леонард Эйлер (в 1731  г.) довел вопрос практически до современного уровня. Он ввел обозначение буквой е и вычислил значение до 18 знаков после запятой.

И еще об одном словечке, связанном с этим числом, надо сказать: экспонента. Так называют функцию y = ex (е в степени х). Тут важно, как мне кажется, кое-что разъяснить, поскольку это слово давно и прочно вошло в журналистику и публицистику. Сплошь и рядом можно прочитать про «экспоненциальный рост» чего-либо. Часто при этом имеют в виду просто очень быстрый рост, но не только журналюгам, но и некоторым «экспертам-аналитикам» очень хочется выглядеть авторитетно, и они украшают свою речь научными терминами. Экспоненциальным можно назвать только такой рост, который зависит от самой изменяющейся величины, а не любое быстрое увеличение чего-либо. Более других грешат неверным использованием понятия «экспоненциальный рост» экономисты и экономические журналисты.

Как запомнить число е? Придумано немало мнемонических правил, стишков. Для «шибко культурных», например, так: «2,7 затем два Льва Толстых потом равнобедренный прямоугольный треугольник». Сие означает, что после 2,7 дважды повторяется год рождения Льва Толстого (1828), а потом углы 45, 90 и 45 градусов. Или стишок: «Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли»  – по количеству букв в каждом слове. А вот еще: «Экспоненту помнить способ есть простой: две и семь десятых, дважды Лев Толстой».

Большой, однако, след оставил великий писатель: и  романов значительных понаписал, и зеркалом революции побыл, и в число Эйлера смог угодить…

Напоследок о том, до какого знака после запятой это число известно. Вот последние (на 2015 год) данные. Два парня, работавшие в  НАСА, запустили мощный компьютер и он, пока процесс не остановили, насчитал число с двумя миллионами с лишним знаков после запятой. Кажется, это пока самое длинное е, но ничего, кроме времени (и денег), не нужно, чтобы нащелкать еще сколь угодно много. 

π  

Число более известное, чем «е», потому что… Не знаю почему. Наверное потому, что числу π в школе уделяют больше внимания, оно чаще упоминается. Но е тоже учат в школе… В общем, про «пи» помнят почти все, а про «е» не все. Сочинено немало стишков и выражений, позволяющих восстановить довольно много знаков в числе π, подсчитывая число букв в каждом слове. Например, вот такие:

Кто и шутя, и скоро пожелать пи число узнать, тот знает.

Чтобы нам не ошибиться,

Нужно правильно прочесть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть.  

Как я хочу и желаю надраться до чертей после сих тупых докладов, наводящих тяжелую депрессию.

Есть и английский вариант:

How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics.

То, что число π есть отношение длины окружности к ее диаметру, тоже помнится людьми довольно долго после школьной поры. Известно

Перейти на страницу:

Сергей Николаевич Белкин читать все книги автора по порядку

Сергей Николаевич Белкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Слова и смыслы. Мировоззрение и картина мира: ассоциативный словарь отзывы

Отзывы читателей о книге Слова и смыслы. Мировоззрение и картина мира: ассоциативный словарь, автор: Сергей Николаевич Белкин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*