Сборник статей - Чего не знает современная наука
Это непреложный наблюдательный факт, он удивителен, он непонятен. Это парадоксально. Начало XXI века, мы многое умеем, но мы понимаем только 4 % всего, из чего состоит Вселенная! Если о прошлом Вселенной можно говорить сколько-нибудь уверенно, потому что у нас есть астрономические наблюдения галактик и реликтового излучения, то о будущем Вселенной надо говорить с большой осторожностью. Прошедшие пять лет убеждают, что свойства пространства могут быть настолько сложными, непонятными, и через пять лет может оказаться, что все устроено еще тоньше. Хотя я думаю, что здесь работает принцип дополнительности, и ни один из экспериментов, ни одна из новых концепций не отменяет предыдущие.
Уверенно можно сказать только одно – каждое новое глобальное открытие в космологии ставит больше вопросов, чем дает ответов на уже существующие. Это и является важной движущей силой познания мира.
Константин Постнов, д-р физ. – мат. наук, МГУ
По материалам доклада на научном семинаре «Нелинейные системы»
Самоорганизация – творчество природы
Древние истины: «время вспять не воротишь», «нельзя дважды войти в одну реку»… Доктор Фауст со своей мечтой об утраченной юности… Время нам кажется рекой, чье мощное течение неумолимо уносит вдаль все, что попадает в ее воды, но в своих водоворотах рождает все новые и новые формы мира. Появившаяся в последней четверти XX века теория нелинейных динамических систем позволяет по-новому взглянуть на вечные вопросы о предопределенности и случайности, найти механизмы творчества природы.
«Стрела времени»: от порядка к беспорядкуВсем нам знакомы ситуации, когда порядок, с любовью наведенный в нашей квартире, несколько дней спустя сменяется хаосом, а замок из песка, выстроенный на берегу моря, через несколько минут превращается в бесформенный холмик, от которого на следующий день не остается и следа. Сложные механизмы рано или поздно ломаются и требуют ремонта. За этими явлениями наука разглядела общий принцип, строгая формулировка которого носит название второго начала термодинамики. Его смысл упрощенно можно пояснить так: в системе, предоставленной самой себе, все меняется от порядка к беспорядку.
Этот закон, открытый в XIX веке, несмотря на столь очевидные примеры своего действия, вызвал целую бурю в науке. Дело в том, что ни известная в те времена механика Ньютона и Галилея, ни электродинамика Максвелла не отличают прошлого от будущего: теоретически движение тел по траекториям возможно как в одну сторону, для этого надо лишь поменять направление скорости на противоположное. При этом движение происходит так, как будто бы время поменяло свой бег на обратный. То же можно сказать и об электромагнитных волнах. Второе начало термодинамики утверждает, что все изменения в мире подчинены определенной тенденции; иными словами, время течет только в одну сторону, и повернуть его вспять невозможно, ибо тогда будет нарушено непреложное правило, столь же незыблемое, как закон сохранения массы или энергии.
Прошлое и будущее субъективны?Вплоть до первой половины XIX века обратимость времени считалась колоссальным достижением разума, идеальным выражением объективности науки. Вот они, истинные законы природы: в них все симметрично, а кажущаяся необратимость – всего лишь следствие субъективности нашего восприятия действительности!
Однако трудности такой концепции непреодолимы. Разбитая ваза не собирается в целую, люди сначала рождаются, живут и потом умирают, и никогда не бывает наоборот, – хотя и ваза, и человек состоят из мельчайших частичек, подчиняющихся законам механики, электродинамики и другим, для которых прошлое и будущее симметричны. Откуда же тогда возникает выделенность течения времени, и где берут начало те явления и объекты нашего мира, которых не было в прошлом? И можно ли вообще адресовать такие вопросы науке, которая идет путем разума и опыта? Ведь с древних времен для объяснения причин и целей существования обращаются к вере, а не к разуму.
Механизмы необратимости времениСовременная нелинейная динамика объясняет механизмы, приводящие к необратимости времени, двумя фундаментальными свойствами, присущими сложным системам. Первое из них состоит в том, что любая сложная система проходит в своем развитии этапы неустойчивости – своего рода кризисы, сопровождающиеся неоднозначностью выбора дальнейшего пути. Второе – в том, что любое сложное движение содержит как составную часть случайную, непредсказуемую «дрожь», так называемые флуктуации.
Законы классической механики просты и обратимы только для относительно простых систем, например, для одной планеты, вращающейся вокруг Солнца. Однако движение под действием сил тяготения уже трех тел чрезвычайно сложно и характеризуется как хаотическое. Воспроизвести его можно только теоретически, даже если абсолютно точно задать начальное расположение и скорость, так как самые малые изменения положения тел приводят к тому, что траектория их движения очень сильно изменяется.
Идея наложения на детерминированное поведение системы случайного, непредсказуемого воздействия имеет богатую историю. Еще в античности Лукреций использовал флуктуации для описания падения атомов в пустоте. К таким же по сути идеям пришел и Эйнштейн для объяснения спонтанного испускания света возбужденным атомом. Случайность лежит и в основе интерпретации построений квантовой механики.
Невозможность обращения времени, например, в механической системе теперь может объясняться следующим образом. Заменив в какой-то момент времени скорость всех частиц на противоположную, мы тем не менее не добьемся точного их движения в обратном направлении – как бы из будущего в прошлое – по прежним траекториям, так как благодаря флуктуациям мы никогда не достигнем абсолютно точного задания нужной начальной конфигурации. Неустойчивость же приведет к тому, что траектории движения частиц не будут даже отдаленно похожи на ожидаемые.
В хаосе рождается новоеЕсли бы все в мире менялось только от порядка к беспорядку, разрушая и сглаживая все формы и структуры, то довольно скоро любые проявления жизни во Вселенной прекратили бы свое существование – все вещество равномерно заполнило бы космическое пространство, выровнялась бы его температура и наступила «тепловая смерть». Но, к счастью, все имеет свою противоположность, и тенденцию, предписываемую вторым началом термодинамики, уравновешивает другая, упорядочивающая. Под ее действием однородная, полностью беспорядочная картина сменяется упорядоченной, структурированной. Из хаотического теплового движения молекул вдруг возникают турбулентные вихри, а из лишенных структуры скоплений межзвездного вещества, достаточно простого по своему составу, рождаются звезды, производящие в своих недрах сложные химические элементы; возникает жизнь; появляются новые виды растений и животных. В последние десятилетия эти явления объединились под общим названием «самоорганизация».
Изолированным, замкнутым системам свойственно стремление к однородности, выравненности, одинаковости, в то время как противоположная, упорядочивающая тенденция – это свойство систем, активно обменивающихся со своим окружением энергией, массой и т. п. В таких системах структуры возникают за счет динамического равновесия между потоками извне и обусловленным вторым началом термодинамики рассеянием внутри системы.
Самоорганизация и эволюцияКонцепция самоорганизации тесно связана с теорией эволюции. В системе, непрерывно снабжаемой энергией, некоторые конфигурации способны воспринимать и использовать поступающую энергию лучше, чем другие. Вследствие рассеяния и потерь энергии последние постепенно исчезают, в то время как первые могут компенсировать свои потери и даже расти, так как они как бы настроены на одну волну с законами эволюции, находятся в резонансе с вибрациями природы и своей структурой улавливают главное направление развития.
Такие умозаключения повторяют ход рассуждений Дарвина и свидетельствуют о том, что принцип выживания приспособленных применим не только к биологической эволюции.
Самоорганизация в активных средахСамоорганизация возникает в системах сама по себе, она не управляется никакими импульсами извне, а появляется как следствие внутреннего устройства системы. Рассмотрим, например, цепочку, составленную из последовательно соединенных элементов, имеющих два состояния равновесия, и будем считать, что на них может влиять лишь соседний элемент, причем тогда и только тогда, когда соседние элементы находятся в разных состояниях. Пусть исходное состояние всех элементов – одно и то же и при возбуждении крайнего элемента он переходит из исходного метастабильного состояния в другое, абсолютно стабильное, и принуждает к этому своего соседа. В результате по цепочке распространяется волна переключения, существующая без какого-либо управляющего вмешательства. Небольшим усложнением элемента среды можно добиться того, что в цепочке будут распространяться уединенный импульс (так называемый солитон – одногорбая волна), либо стоячие или бегущие волны.