Kniga-Online.club
» » » » Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики с таблицей

Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики с таблицей

Читать бесплатно Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики с таблицей. Жанр: Публицистика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Третій способъ, предложенный Адамомъ Ризе, нѣмецкимъ педагогомъ XVI вѣка, примыкаетъ къ первому. Объяснимъ его на примѣрѣ: 85322—67876. Ведемъ вычитаніе съ простыхъ единицъ. По обыкновенному пріему надо бы 6 вычесть изъ 12-ти, а мы по этому третьему способу вычтемъ 6 не изъ 12-ти, а изъ 10-ти, и этотъ 1 десятокъ занимаемъ у 2 десятковъ уменьшаемаго. 6 изъ 10 составитъ 4, да 2 единицы въ уменьшаемомъ, всего будетъ 6. Далѣе вычитаемъ десятки. Такъ какъ 7 не вычитается изъ двухъ, или вѣрнѣе изъ одного, потому что одинъ десятокъ мы уже заняли, то надо намъ занять сотню и раздробить ее въ десятки; сотня даетъ 10 десятковъ, вычтемъ изъ нихъ 7, тогда получимъ въ разности 3; да еще въ уменынаемомъ 1 десятокъ, итого накопится въ остаткѣ 4. Такъ же поступаемъ и съ остальными разрядами: 10—8=2, да 2, всего 4 сотни; 10—7=3, да 4 тысячи, всего 7 тысячъ; 10—6=4, да 8, всего 12 десятковъ тысячъ; но изъ этихъ 12 десятковъ тысячъ надо исключить 1 сотню тысячъ, потому что мы ее какъ бы заняли, а между тѣмъ занять-то было не у чего, то мы ее теперь и счеркиваемъ у остатка. Выводъ относительно третьяго способа получается слѣдующій. Онъ основанъ на отниманіи каждаго разряда вычитаемаго отъ 10-ти и прибавленіи разрядовъ уменьшаемаго, а такъ какъ разность между какимъ-нибудь однозначнымъ числомъ и десятью называется дополненіемъ этого числа до 10-ти, то способъ Адама Ризе можно еще выразить такъ: къ разрядамъ уменьшаемаго надо прикладывать дополненія разрядовъ вычитаемаго до 10-ти. Еще примѣръ:

1 9 0 3 3 0 9 1

  2 7 8 5 3 0 6

———————————————

1 6 2 4 7 7 8 5;

Рѣшается онъ такъ: 4, дополненіе 6-ти до 10-ти, да 1, будетъ 5; 10, дополненіе нуля до 10-ти, да 8, потому что 1 занята, составитъ 18, изъ нихъ 8 пишемъ, а 1 сотню отбрасываемъ, потому что, когда мы брали дополненіе, то для этого намъ необходимо было имѣть сотню, а такъ какъ мы ея не занимали въ уменьшаемомъ, то и счеркиваемъ ее въ остаткѣ. Такъ же поступать надо и въ другихъ подобныхъ случаяхъ, именно когда дополненіе вычитаемаго вмѣстѣ съ разрядомъ уменьшаемаго дастъ болѣе 10-ти, то десятокъ счерки-вается. Способъ Адама Ризе былъ знакомъ его современникамъ, но особаго развитія и распространеиія онъ не получилъ. Онъ очень на-поминаетъ новый, пятый способъ, который помѣщаемъ ниже.

Четвертое правило вычитанія принадлежитъ арабскому ученому Алькальцади изъ Андалузіи (XV в.). Чтобы, напримѣръ, вычесть 287 изъ 573, надо сперва 7 простыхъ единицъ вычесть изъ 3-хъ. Конечно, 7 изъ 3-хъ не вычитается, но прежде чѣмъ занимать десятокъ, Алькальцади задается вопросомъ: много ли недостаетъ къ тремъ для того, чтобы изъ нихъ можно было вычесть семь? Оказывается, недостаетъ четырехъ. И вотъ мы занимаемъ теперь десятокъ изъ 7 десятковъ, раздробляемъ его въ единицы и вычитаемъ столько, сколько не хватало, т.-е. 4, въ остаткѣ будетъ 6. Такимъ же образомъ идетъ вычисленіе и съ десятками, и съ сотнями: 8 изъ 6, недостаетъ двухъ, вычитаемъ 2 изъ 10-ти, будетъ 8 десятковъ; на-конецъ, 2 сотни изъ 4 сотенъ дадутъ 2 сотни, веего 286.

Связь между способами первымъ, третьимъ и четвертымъ мы представимъ для ясности еще разъ на двузначныхъ числахъ. Возьмемъ 41–27. По первому способу необходимо 7 вычитать изъ 11-ти, по третьему 7 вычитается изъ десяти, и къ полученному прибавляется 1, а по четвертому изъ 10-ти вычитается недостатокъ единицы противъ 7-ми. Что касается второго способа, то въ немъ, какъ и въ первомъ, 7 вычитается изъ 11-ти, но за то потомъ, когда идетъ отниманіе десятковъ, не 2 десятка отнимается изъ 3-хъ, а 3 изъ 4-хъ.

Пятый и послѣдній способъ сходенъ по своей основной мысли со способомъ Адама Ризе. Въ немъ прибавляется къ разрядамъ уменьшаемаго дополненіе разрядовъ вычитаемаго, при чемъ дополненіе берется то до 10-ти, то до 9-ти: до десяти тогда, когда надъ цифрой уменьшаемаго не стоитъ точки, которая бы показывала, что здѣсь единица занята, а до 9-ти тогда, когда стоитъ точка. Примѣръ: 731–264. Чтобы произвести это вычитаніе по пятому способу, прибавляемъ къ одной простой единицѣ уменьшаемаго 6, т.-е. дополненіе 4-хъ единицъ вычитаемаго до 10-ти; получится 7. Далѣе беремъ десятки: 3 да 3 составитъ 6, при чемъ вторая тройка представляетъ собой дополненіе 6 десятковъ вычитаемаго до 9-ти, а до 9-ти потому, что надъ десятками уменьшаемаго стоитъ точка, какъ знакъ заниманія. Наконецъ, опредѣляемъ сотни: 7 да 7-мь 14, 4 беремъ, а 1 скидываемъ. Окончательный отвѣтъ будетъ 467. Теперь надо объяснить, почему мы такъ дѣлаемъ, и на чемъ основанъ этотъ способъ. Намъ требовалось отнять 264, а мы не только не стали отнимать, но даже начали прикладывать и приложили всего 7 сотенъ 3 десятка 6 единицъ. На сколько же мы ошиблись, благодаря тому, что вмѣсто отниманія 264-хъ прибавили 736? Очевидно, на 736+264, т. е. ровно на тысячу.

Эту свою ошибку мы и исправляемъ въ самомъ концѣ, отчеркивая у отвѣта тысячу. Если бы намъ данъ былъ примѣръ 34985322— 12467876, то вычисленіе получилось бы такое: 2+4=6, 2+2=4, 3+1=4, 5+2=7, 8+3=11, изъ этого лѣвая единица скидывается, 9+6=15, 4+8=12, 9+3=12, всѣ лѣвыя единины окидываются. Если нужно дѣйствіе производить поскорѣе, то лучше точки ставить не надъ уменьшаемымъ, а надъ вычитаемымъ. И вообще этотъ пятый способъ напоминаетъ собою второй епособъ тѣмъ, что занимаемую единицу можно считать приложенной къ вычитаемому, а не отнятой отъ уменьшаемаго.

Таблица умноженія

Твердое знаніе таблицы умноженія издавна требовалось отъ учениковъ и считалось совершенно необходимымъ. Составителемъ таблицы называютъ греческаго математика Пиѳагора или, вѣрнѣе, одного изъ его позднѣйшихъ учениковъ, новопиѳагорейца Никомаха (въ I ст. по Р. X.). Начиная съ Никомаха ни одинъ авторъ не забываетъ напоминать, что «преимущественно передъ всѣмъ слѣдуетъ хорошо знать таблицу». Авторы старинныхъ русскихъ математнческихъ сборниковъ также помѣщаютъ таблиду, или «границу умножалную» подъ титуломъ «граница изустная большему счету разумъ подаетъ хотящему въ нея зрѣти»; они тоже требуютъ заучиванія: «надобе сіи изустныя слова памятовати и въ памяти крѣпко держати, всегда во устѣхъ обносити, чтобы во умѣ незабыты были». Вотъ стихи изъ Магницкаго:

«Аще кто не твердитъ,Таблицы и гордитъНе можетъ познати,Числомъ что множати.И во всей науки,Не свободъ отъ муки.Колико ни учитъТуне ся удручитъ.И въ пользу не будетъ,Аще ю забудетъ».

Въ римскихъ школахъ таблицу заучивали хоромъ на распѣвъ. Въ нашихъ современныхъ учебникахъ по ариѳметикѣ таблица умноженія содержитъ въ себѣ обыкновенно произведенія всѣхъ однозначныхъ чиселъ, начиная съ 2×2 и кончая 9×9. Въ средніе вѣка смотрѣли на это дѣло иначе; тогда и въ ариѳметикѣ, и въ другихъ наукахъ давали большой просторъ памяти, а поэтому заучиваніе примѣняли широко; требованія въ этомъ отношеніи простирались такъ далеко, что ученики обязаны были запоминать произведенія всѣхъ первыхъ сорока чиселъ на однозначныхъ множителей, слѣдовательно 360 произведеній, кромѣ того, квадраты всѣхъ чиселъ, выраженныхъ полными десятками, кончая 90X90, и произведенія всѣхъ однозначныхъ чиселъ на полные десятки, кончая 9×90. Всего набирается болѣе 400 произведеній. И такую-то массу должна была поглотить память учащихся! Сколько же труда и сколько времени надо было истратить на это! Вѣдь учили прямо наизусть, безъ всякихъ разъясненій и въ громадномъ большинствѣ случаевъ безъ всякаго пониманія. Трудно и теперь ребятамъ, когда ихъ заставляютъ заучивать таблицу умноженія, не напрактиковавши ихъ, какъ она составляется; но неизмѣримо труднѣе приходилось ученивамъ средневѣковой школы, въ которой требовали гораздо больше, а давали гораздо меньше.[7]

Римляне, чтобы облегчить себѣ перемноженіе чиселъ, содержащихъ много разрядовъ, пользовались длиннѣйшими таблицами умноженія, въ которыхъ множителями служили всѣ числа до извѣстнаго предѣла. Съ такими таблицами—ихъ, конечно, не заучивали, а только держали всегда записанными подъ рукой—римляне довольно быстро вычисляли сложныя и трудныя произведенія.

Письменно таблица представляется въ различныхъ формахъ. Изъ нихъ самая общеизвѣстная—Пиѳагорова таблица; ея мы не помѣщамъ, она есть въ каждомъ учебникѣ. Но есть еще фигура треугольника.

Французскій математикъ Chuquet (1484 г.) представляетъ таблицу умноженія въ такой формѣ:

Про то, какъ составляется обыкновенная таблица умноженія, говорилось подробно въ большинствѣ учебниковъ и объяснялось нѣсколькими, иногда многими способами. Но пропускался самый главный и простой способъ, когда таблицу составляютъ послѣдовательнымъ сложеніемъ, или набираніемъ. Вмѣсто него приводились такіе запутанные и искуственные пріемы, что, дѣйствительно, гораздо легче было выучить таблицу наизусть, не понимая ея, чѣмъ запомнить эти пріемы и особенно понять ихъ; они представляли изъ себя не столько ариѳметическое содержаніе, сколько алгебраическія формулы и помѣщались, какъ видно, больше для того, чтобы придать курсу серьезную, научную окраску. Между прочимъ, встрѣчаемъ въ старыхъ ариѳметикахъ такое правило: «умножь перваго производителя на 10 и вычти отсюда произведеніе того же перваго производителя на дополненіе второго производителя до десяти»; это яснѣе видно на примѣрѣ: чтобы составить, напримѣръ, 4×7, надо 4 умножить на 10, будетъ 40, потомъ 4 на 3, потому что 3 служитъ дополненіемъ 7-ми до 10, будетъ 12, и, наконецъ, изъ 40 вычесть 12, тогда остатокъ 28 и составитъ произведеніе 4 на 7. Какія все это лишнія хлопоты и затрудненія! Они всегда неизбѣжны, если на дѣло смотрѣть не прямо и просто, а съ предвзятой точки зрѣнія, и въ данномъ случаѣ съ той ошибочной точки зрѣнія, что будто бы чѣмъ объясненіе или способъ труднѣе, тѣмъ научнѣе. Не можетъ же быть, чтобы авторы учебниковъ, люди довольно искусные въ изобрѣтеніи разныхъ пріемовъ, не замѣчали среди нихъ самыхъ простыхъ и естественныхъ; но они какъ бы стѣснялись высказать простое слово.

Перейти на страницу:

Всеволод Беллюстин читать все книги автора по порядку

Всеволод Беллюстин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Как постепенно дошли люди до настоящей арифметики с таблицей отзывы

Отзывы читателей о книге Как постепенно дошли люди до настоящей арифметики с таблицей, автор: Всеволод Беллюстин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*