Антон Первушин - 108 минут, изменившие мир
27 сентября 1930 года Общество приобрело небольшой участок земли, расположенный в районе Рейникендорфа (пригород Берлина). Там возник испытательный полигон, вошедший в историю как Raketenflugplatz – Ракетодром. До конца 1933 года на ракетодроме было осуществлено 87 стартов ракет Mirak и 270 запусков двигателей на стенде[20].
Последним крупным предприятием немецкого Общества межпланетных сообщений стала пилотируемая ракета Pilotrakete[21]. По проекту она должна была иметь огромные для того времени размеры (высота – почти 8 м) и мощный ракетный двигатель с «носовой» тягой[22], работающий на смеси бензин-кислород. В одном отсеке планировалось разместить кабину с пассажиром и топливные баки, в другом – двигатели и парашют. Создатели ракеты надеялись, что она достигнет высоты 9 км.
«Pilotrakete» – пилотируемая ракета немецкого Общества межпланетных сообщений
В реализации проекта проявила заинтересованность администрация Магдебурга, выделив на него 40 тыс. рейхсмарок. Нашелся даже смельчак, готовый отправиться в ракетный полет, – некто Курт Гейниш.
На начальном этапе члены Общества собирались построить прототип – ракету той же схемы, что и Pilotrakete, но меньших размеров. Работа началась в рождественские праздники 1932 года, а первый старт был запланирован на июнь 1933 года. Поблизости от Магдебурга члены Общества соорудили большую пусковую направляющую. 29 июня, после двух неудачных попыток запуска, ракета все же стартовала. При этом один из роликов сошел с направляющего рельса, из-за чего ракета взлетела почти горизонтально и упала плашмя на землю в 300 м. Максимальная высота полета составила около 30 м. На этом проект был закрыт.
В роковом 1933 году к власти в Германии пришли нацисты. Уже зимой количество членов Общества межпланетных сообщений сократилось до трехсот человек, а многие из них лишились средств к существованию. Общество пыталось найти поддержку у военных, однако показательный запуск ракеты Mirak на полигоне Куммерсдорф южнее Берлина не произвел должного впечатления на боевых офицеров – ракета упала всего лишь на расстоянии 2 км от старта.
1.3
Группа изучения реактивного движения
В Советской России также предпринимались попытки создать организацию ракетчиков, занимающихся проектированием систем для космических полетов. Наибольшую активность на этом поприще проявил выпускник Рижского политехнического института Фридрих Артурович Цандер[23].
Позднее Цандер вспоминал, что на его жизненный выбор повлияли два текста: роман Жюля Верна «С Земли на Луну…» и статья Циолковского «Исследование мировых пространств реактивными приборами», фрагменты из которой зачитал его классу школьный учитель. Цандер верил, что Марс обитаем, и, добравшись до красной планеты, земляне встретят там высокоразвитую цивилизацию. На всю жизнь лозунгом Фридриха Артуровича стал призыв: «Вперед! На Марс!»
Фридрих Артурович Цандер
Внимание Цандера привлекали вопросы конструирования космических аппаратов, выбора движущей силы, создания замкнутой системы жизнеобеспечения. В 1909 году Цандер впервые высказал мысль о том, что в качестве горючего можно использовать элементы конструкции межпланетного корабля[24]. В 1915 году в связи с приближением фронта к Риге Цандер был эвакуирован вместе с персоналом завода «Проводник» в Москву. С 1917 года он приступил к систематическим исследованиям проблем теоретической космонавтики.
Результаты своих предварительных изысканий Фридрих Цандер представил 29 декабря 1921 года на первой Губернской конференции изобретателей, проходившей в Москве. Он специализировался на авиационных двигателях, однако на этот раз решил удивить коллег фантастическим проектом корабля-аэроплана для полета на Марс. Символическое совпадение – в то же самое время находящийся в эмиграции знаменитый писатель Алексей Николаевич Толстой начал работу над романом «Аэлита», в котором собирался описать полет изобретательного инженера Лося и красногвардейца Гусева в космическом корабле на Марс.
Модель межпланетного корабля системы Цандера
Проект, озвученный на Губернской конференции изобретателей, был весьма оригинален. В качестве межпланетного корабля действительно служил большой герметичный аэроплан. В пределах атмосферы он должен был летать с помощью поршневых двигателей высокого давления, а на границе космоса большие крылья втягивались внутрь фюзеляжа и расплавлялись, служа дополнительным топливом для ракетного двигателя. Малые крылья были необходимы для планирования в атмосфере Марса и при возвращении на Землю.
Доклад был принят благосклонно, и тогда Цандер попросил у руководства Госавиазавода № 4, на котором в то время трудился, годичный отпуск для развития проекта. На общем собрании работников просьбу энтузиаста поддержали – идея полета на Марс так завораживала, что было решено отчислять Цандеру процент с зарплаты для того, чтобы он мог спокойно довести свой космический аэроплан до реальной модели.
Будучи по натуре практиком, Цандер сразу занялся поисками технических решений, которые могли бы ускорить постройку такого аэроплана. В 1924 году он приступил к разработке методик расчета жидкостных ракетных двигателей.
Рижский инженер столкнулся с той же проблемой «замкнутого круга», что и немец Герман Оберт: для создания жидкостного ракетного двигателя нужна теория двигателей, но теория не может возникнуть без двигателя.
Двигатель «ОР-1», разработанный Фридрихом Цандером
Фридрих Цандер решил пойти эмпирическим путем, то есть методом проб и ошибок. Прототип он нашел на заводе имени Матвеева в Ленинграде – им стала обычная паяльная лампа. Переделав ее, инженер создал двигатель «ОР-1» («Первый опытный реактивный»), работающий на бензине и воздухе. В период с 1930 по 1932 год Цандер провел большое количество испытаний. Полученные результаты дали возможность перейти к созданию более совершенных двигателей, в которых окислителем служил жидкий кислород. Именно в этот период Цандер познакомился с амбициозным авиаконструктором Сергеем Павловичем Королёвым.
Сергей Королёв, выпускник Московского высшего технического училища и Московской школы летчиков-планеристов, в начале карьеры занимался конструированием планеров. Первую славу ему принес планер «Красная Звезда» – 28 октября 1930 года пилот Василий Степанчонок сделал на нем три «мертвые петли» подряд. О выдающемся полете написали профильные издания: «Самолет», «Красная Звезда», «Физкультура и спорт».
Когда Королёв начал обучение на инженера-конструктора, он не задумывался о космических полетах и ничего не слышал ни о Циолковском, ни о Цандере. Однако стремление летать выше и дальше, присущее всем авиаторам, побуждало его искать новые пути. В майском номере журнала «Самолет» за 1931 год была опубликована подборка материалов о первых удачных опытах с ракетными двигателями – этих сведений оказалось достаточно, чтобы молодой инженер обратил внимание на новые веяния. Заинтересовавшись темой, Королёв начал перебирать конструктивные схемы планеров с целью найти ту, которая идеально подошла бы для размещения ракетного двигателя, и остановился на «бесхвостой схеме». Оказалось, что такой планер – «БИЧ-8» («Треугольник») – уже существует[25]. Королёв сразу присоединился к его испытаниям, которые проходили на аэродроме ОСОАВИАХИМА[26]. Там молодого авиаконструктора и нашел Фридрих Цандер.
Сергей Королев (слева) и Борис Черановский у планера «БИЧ-8»
Судьбоносная встреча состоялась 5 октября 1931 года, и уже через два дня Королёв присутствовал при тридцать втором по счету стендовом запуске двигателя «ОР-1». Видимо, испытания произвели впечатление, и авиаконструктор загорелся идеей создания ракетоплана – самолета с ракетным двигателем.
Незадолго до этого Цандер начал формировать Группу по изучению реактивного движения (ГИРД)[27]. Королёв поддержал начинание – и до ГИРД в Советской России появлялись группы ракетчиков-энтузиастов, однако все они быстро прекращали существование, не имея конкретных задач и, соответственно, финансирования. У ГИРД такая задача была четко сформулирована: проектирование и создание ракетоплана «РП-1» с жидкостным двигателем «ОР-2»[28].
Почему именно ракетоплан, а не большая баллистическая ракета? Объяснение простое – создание больших ракет в ту пору было делом совершенно новым, и любой, кто начинал заниматься серьезным проектированием в этой области, наталкивался на ряд проблем. Одна из серьезнейших – как обеспечить стабильность полета ракеты и ее управляемость на всех этапах? Если в момент старта траекторию движения задавал пусковой станок с направляющими, а в дальнейшем ее поддерживали хвостовые стабилизаторы, то как быть с маневрированием в атмосфере и за ее пределами? Как обеспечить автоматическое регулирование тяги двигателя на различных режимах полета? Ракетоплан, казалось, решал большую часть этих проблем – управляемость обеспечивали крылья и их механизация; тягу двигателя мог регулировать сидящий в герметичной кабине пилот. Кроме того, в авиации уже был накоплен значительный опыт по созданию аппаратов тяжелее воздуха, и этим опытом не стоило пренебрегать.