Никола Тесла - Лекции
Когда энергия адсорбируется конденсатором, он ведет себя так, как будто его емкость увеличилась. Это явление всегда имеет место, в большей или меньшей степени, но оно невелико и не имеет последствий, если частота невысока. При использовании крайне высокой частоты, и обязательно в данном случае высокого потенциала, адсорбция — или то, что в нашем случае, в частности, называется потерей энергии вследствие присутствия газообразной среды, — это важный фактор, который надо учитывать, так как энергия, потерянная в воздухе, может составлять любую часть затраченной энергии. Может показаться, что по измеренной или вычисленной емкости конденсатора очень трудно определить его действительную емкость или период колебаний, особенно если конденсатор имеет маленькую поверхность и высокий потенциал. Так как многие важные результаты зависят от точности предположения, этот предмет требует тщательного исследования другими экспериментаторами. Для уменьшения шансов на ошибку в указанных опытах я бы посоветовал использовать шары или пластины большой площади, дабы уменьшить электрическую плотность. В противном случае, если это возможно практически, следует пользоваться масляным конденсатором. По видимому, в масле или других жидких диэлектриках, таких потерь, как в газообразной среде, не происходит. Если есть возможность полностью выгнать газ из конденсаторов с твердым диэлектриком, то их следует помещать в масло только лишь по соображениям экономии; тогда они могут получать наивысший потенциал и оставаться холодными. В лейденских банках потери в воздух практически малы, так как покрытия из фольги большие, расположены близко друг к другу и заряженные поверхности не открыты напрямую; но когда потенциалы высоки, потери могут быть значительны на верхнем крае фольги или около него, там, где на воздух оказывается самое сильное воздействие. Если банку поместить в олифу, то она сможет выполнять работу, в четыре раза превышающую то же самое количество, выполненное за единицу времени при обычных условиях, и потери при этом будут ничтожны.
Не следует думать, что тепловые потери в воздушном конденсаторе обязательно связаны с образованием видимых потоков или кистей. Если небольшой электрод, помещенный в колбу с воздухом, соединить с выводом катушки, можно заметить потоки, исходящие от него, а воздух в колбе нагреется; если вместо электрода туда поместить большой шар, то потоков не будет, но воздух нагреется.
Также не следует думать, что температура воздушного конденсатора может дать представление о потерях при нагреве, так как в таком случае теплота должна выделяться гораздо быстрее: в дополнение к обычному излучению происходит очень интенсивный отток тепла с независимыми носителями, поскольку не только устройство, но и воздух на некотором расстоянии от него нагреваются из-за возможных столкновений.
Благодаря этому в экспериментах с катушкой повышение температуры можно отчетливо наблюдать только, когда предмет, соединенный с ней, достаточно мал. Но если аппарат больших размеров, даже большой предмет нагреется, например, человеческое тело; и я думаю, что опытным врачам полезно последить за такими опытами, которые при правильной конструкции устройств не представляют никакой угрозы для здоровья.
Здесь возникает интересный вопрос, в основном, для метеорологов. Как ведет себя Земля? Земля — это воздушный конденсатор, но он совершенен или нет, или является просто стоком энергии? Нет почти никаких сомнений, что во время таких возбуждений, которые происходят во время опытов, Земля — совершенный конденсатор. Но всё может быть иначе, когда ее заряд начинает колебаться под влиянием каких-то небесных воздействий. В таком случае, как указывалось ранее, видимо, только небольшое количество энергии будет передано в космос в форме длинных эфирных волн, но наибольшее количество энергии, я думаю, истратится при молекулярных и атомных столкновениях, и уйдет в космос в форме коротких тепловых и, возможно, световых волн. Так как частота колебаний заряда и потенциал, по всей вероятности, крайне велики, преобразованная в теплоту энергия может быть значительна. Поскольку электрическая плотность распределяется неравномерно, как по причине неровностей земного рельефа, так и из-за различных атмосферных явлений, полученный эффект будет разным в разных местах. Значительные изменения в температуре и атмосферном давлении вследствие этого могут происходить в разных местах планеты. Изменения могут быть постепенными или внезапными, соответственно природе возбуждения, и могут вызывать ливни и грозы, или локально изменять погоду так или иначе.
Из приведенных замечаний можно сделать вывод о том, каким важным фактором становятся потери в воздухе, окружающем заряженные поверхности, когда электрическая плотность велика, а частота импульсов чрезмерна.
Но в соответствии с нашими объяснениями выходит, что воздух — изолятор, то есть он состоит из независимых носителей зарядов, погруженных в изолирующую среду. Так получается, когда воздух находится под обычным или немного выше, или очень малым давлением. Когда же воздух немного разрежен и проводит ток, тогда настоящие потери проводника также имеют место. В таком случае, конечно, значительное количество энергии может быть рассеяно в воздухе даже при постоянном потенциале, или импульсах низкой частоты, если плотность очень большая.
Когда газ находится под очень небольшим давлением, электрод нагревается сильнее, так как достигаются более высокие скорости. Если газ вокруг электрода сильно сжат, то смещения, а соответственно и скорости, очень малы, и нагрев незначителен. Но если в таком случае повысить частоту, то электрод нагреется до высокой температуры, точно так же, как он бы нагрелся, если бы газ находился под низким давлением; на самом деле откачка воздуха необходима, потому что мы не можем получить (и возможно передать) токи требуемой частоты.
Возвращаясь к теме электродной лампы, хорошо было бы как можно больше сконцентрировать тепло возле электрода путем предотвращения циркуляции воздуха в колбе. Если взять очень маленькую колбу, то в ней тепло будет концентрироваться лучше, чем в большой, но ее емкость может не позволить ей работать от катушки, но если это произойдет, стекло будет сильно греться. Проще всего усовершенствовать конструкцию, взяв лампу нужного размера и поместив внутрь нее небольшую колбу, диаметр которой точно выверен, расположив ее над тугоплавкой головкой накаливания. Эта конструкция показана на рисунке 28.
Колба L в данном случае имеет горловину п, достаточно широкую для того, что через нее прошла маленькая колба Ъ. В противном случае конструкция будет такой же, как показано на рисунке 18. Маленькая колба размещена на стеклянной ножке s, на которой есть тугоплавкая головка т. От алюминиевой трубки а ее отделяют несколько слоев слюды М для того, чтобы не допустить трещин стеклянной ножки вследствие резкого нагревания алюминиевой трубки при внезапном включении катушки. Если требуется производить свет только за счет накаливания электрода, то внутренняя колба должна быть как можно меньше. Если желательно вызвать фосфоресценцию, то она должна быть побольше, иначе она может нагреваться и свечение прекратится. В такой конструкции обычно только в маленькой колбе возникает фосфоресценция, так как внешняя колба практически не подвергается бомбардировке.
В некоторых лампах, показанных на рисунке 28, маленькие трубки были выкрашены фосфоресцирующей краской и получались прекрасные световые эффекты. Вместо того чтобы увеличивать размер внутренней колбы и избежать преждевременного нагрева, целесообразно взять больший электрод т. Это ослабит бомбардировку по причине меньшей электрической плотности.
Много ламп было изготовлено по схеме, изображенной на рисунке 29. Здесь маленькая колба Ь, содержащая тугоплавкую головку т, после того как в ней создали вакуум, была закупорена в большой лампе L, из которой воздух был немного откачан. Она также закупорена. Принципиальное отличие этой конструкции в том, что она позволяет достичь высокой степени вакуума и в то же время использовать большую колбу. В процессе опытов, проводимых с такими лампами, выяснилось, что лучше всего делать ножку 5 возле пробки е очень толстой, а подводящий провод w тонким, так как случалось такое, что ножка в этом месте нагревалась и колба трескалась. Часто получалось так, что вакуума в большой колбе было достаточно лишь для того, чтобы проходил разряд, а пространство между колбами было малинового цвета, давая любопытные эффекты. В некоторых случаях, когда вакуум был небольшой и воздух хорошо проводил ток, чтобы сильно накалить головку т, желательно было в верхней части горловины колбы поместить жестяную фольгу, замкнутую на изолированный предмет, землю или другой вывод катушки, так как хорошо проводящий ток воздух немного ослаблял эффект, возможно, потому, что на него индуктивно действовал провод w там, где он входил в колбу в точке е. Еще одна трудность, которая, однако, всегда присутствует, когда тугоплавкую головку помещают в небольшую колбу, обнаружилась в конструкции, показанной на рисунке 29, а именно: вакуум в колбе Ь снижался за короткое время.