Kniga-Online.club
» » » » Комиссия по борьбе с фальсификацией научных исследований РАН - В защиту науки (Бюллетень 1)

Комиссия по борьбе с фальсификацией научных исследований РАН - В защиту науки (Бюллетень 1)

Читать бесплатно Комиссия по борьбе с фальсификацией научных исследований РАН - В защиту науки (Бюллетень 1). Жанр: Прочая документальная литература издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

При подробном изучении волокон Мак-Крон нашел на них два компонента: растворимая в воде краска темпера с окисью железа (железистая охра) и с киноварью. Этот второй компонент использовался старыми мастерами как алый цвет, и получали они его из сернистой ртути. Частицы этих двух компонентов отождествляются вполне уверенно. Мак-Крону удалось показать, что обнаружить железистую охру можно только в области самого изображения, и ее нет в контрольных областях покрывала. А краска из сернистой ртути встречается исключительно в «кровавых» областях. Тот факт, что в живописи XIII и XIV веков киноварь часто использовалась для изображения крови, только усиливает предположение о покрывале как о произведении искусства. Наряду с этим Мак-Крон нашел и следы других частиц, причем многие из них типичны для малярных красок. Все это укрепило Мак-Крона во мнении, что покрывало могло время от времени попадать мастерскую художника. Поскольку Мак-Крон считал возможным античное происхождение покрывала, он сделал вывод, что краска была использована дополнительно для более выразительной реставрации пожелтевших пятен, оставленных телом на покрывале.

В своей книге "Судный день Туринской плащаницы" (1999 г.) Мак-Крон приводит следующий курьезный случай: его жена, тоже исследователь, изучала клеевую полоску с одной старой французской картины. Результаты ее анализа оказались так похожи на результат анализа плащаницы, что Мак-Крон вначале предположил: его жена случайно перепутала в лаборатории свои полоски с его полосками с плащаницы. Ведь исследуемая картина была как раз из той страны, где в XIV в. внезапно появилась Туринская плащаница.

Факты постепенно склонили Мак-Крона к мысли, что плащаница — искусственное изделие. Но когда он поделился своими выводами с другими членами группы STURP, то встретил сопротивление. У него отобрали клеевые полоски, и он не смог продолжить исследования. Ему было запрещено сообщать о своих результатах без согласия группы. Со временем Мак-Крон потерял надежду переубедить своих прежних соратников и приостановил свое членство в STURP. И, наконец, он начал публиковаться в различных журналах, в результате чего смог найти согласие с непредвзятыми учеными.

Однако усилия по химическому анализу плащаницы продолжаются: Виктор Трион из Техасского университета в 1998 г. заявил, что обнаружил кровь на Туринской плащанице. Раньше об этом же заявляли Алан Адлер и Джон Геллер, члены группы STURP. Фактически же ими было представлено доказательство наличия железа, белка и других субстанций, которые встречаются в человеческой крови. Но эти же субстанции можно получить и при химическом анализе темперы. Решающим здесь является то обстоятельство, что на ткани не удалось найти никаких других существенных составляющих крови, например — калия, которого в крови в три раза больше, чем железа. Правда, позже появились сообщения, что на покрывале найдены следы ДНК. Наличие ДНК может, конечно, свидетельствовать в пользу наличия крови, но это очень слабый свидетель. После того как столько людей на протяжении столетий имело дело с покрывалом, было бы чудом, если бы на нем не было найдено никаких человеческих следов.

Думаю, вы согласитесь со мной, что история исследований этого туринского покрывала захватывает как истинный детектив. В ней скрестились тончайшие научные методики физиков, биологов и даже ботаников: исследуются ткань, красители и даже мельчайшие частицы цветочной пыльцы, застрявшие в нитях ткани и способные указать маршрут путешествия полотна. Из огромного количества публикаций сложно выделить надежные и непредвзятые, поскольку над исследованиями витает напряжение, связанное со столкновением интересов фанатиков и ученых, церкви и науки. Не берусь пересказывать даже малую часть того, что узнал о Туринской плащанице за короткое время моего к ней интереса. Любой, кого привлекают подробности ее истории, без труда найдет их в литературе. А если воспользоваться Интернетом и набрать в поисковой системе два слова — "Туринская плащаница", то компьютер обрушит на вас мегабайты информации. Но цель этой моей статьи в ином…

При первом же знакомстве с "туринской проблемой", я, как нормальный выпускник физфака МГУ, сразу же спросил себя: "Неужели нельзя объективно измерить возраст полотна и таким образом попытаться единым махом решить проблему фальсификации? Если полотну не 2000 лет, то никакой связи с библейскими историями у него нет — это подделка. А если ему 2000 лет, то это действительно уникальный исторический памятник, достойный внимания и глубокого изучения". Задав себе этот вопрос, я быстро обнаружил, что не один я "такой умный": именно проблема возраста Туринского полотна считается сейчас важнейшей и привлекает внимание как серьезных, так и не вполне серьезных ученых.

Итак, что же такое Туринская плащаница: средневековая фальсификация или свидетель реальных событий двухтысяче-летней давности?

Возраст полотна

Современные научные методы предлагают много способов датировки исторического памятника: физико-химический, археологический, искусствоведческий, теологический (соотнесение библейских текстов с изображением на полотне) и другие. Но мне, как естествоиспытателю, наиболее надежным кажется именно физико-химический радиоуглеродный метод, основанный на распаде радиоактивного изотопа углерода и давно уже принятый на вооружение всеми историками и археологами в мире (например, см.: Черных, 1997).

Суть этого метода вкратце такова. В земной атмосфере атомы углерода присутствуют в виде трех изотопов: 12С, 13С и 14С. Легкие изотопы 12С и 13С стабильны, а тяжелый изотоп 14С радиоактивен, время его полураспада составляет 5730 лет. Однако его содержание в атмосфере Земли сохраняется приблизительно постоянным (один атом 14С на 1000 млрд атомов 12С), поскольку изотоп 14С постоянно образуется в атмосфере из атомов азота под действием космических лучей. Растения, животные и другие организмы, поддерживающие газовый обмен с атмосферой, усваивают 14С и при жизни содержат его примерно в той же пропорции, как и земная атмосфера. Но когда организм умирает, его обмен с атмосферой прекращается, 14С больше не поглощается тканями, и его содержание начинает медленно уменьшаться за счет радиоактивного распада. Если измерить в образце соотношение 14С и 12С, то можно определить его возраст образца, точнее, время, прошедшее с момента его смерти. Чем меньше осталось атомов 14С, тем старше объект.

Разумеется, детальная технология этого метода не так проста. В принципе, если бы было известно первоначальное содержание 14С, можно было бы прямо вычислить возраст образца, исходя из закона радиоактивного распада. Но сначала следует убедиться, что образец не загрязнен более поздним углеродом, а для этого его необходимо очистить. Затем нужно учесть, что атмосферное содержание 14С колеблется, поскольку жесткое космическое излучение не постоянно; к тому же имеются переменные источники углерода (например, вулканы, а в современном мире — уголь и нефть), меняющие относительное содержание 14С. Чтобы избавиться от этих неточностей, проводят калибровку метода с помощью древесных образцов, возраст которых точно известен по их годичным кольцам.

Таким образом, определение возраста происходит в три этапа.

1. Образец очищают от случайных, более поздних примесей.

2. Измеряют содержание изотопов углерода и с помощью закона распада вычисляют так называемый радиоуглеродный возраст (привязанный к 1950 г.), который исчисляется в величинах "yr.BP" (years before present — лет до настоящего времени). Но этот радиоуглеродный возраст не рассматривается как истиный возраст образца, а выступает лишь как мера содержания 14С. И при этом не имеет значения, что вместо реального времени полураспада 5730 лет используется так называемое время полураспада Либби (по имени создателя этого метода Уилларда Либби), принятое равным 5568 годам.

3. По радиоуглеродному возрасту с помощью калибровочной кривой определяется календарная дата образца, которая приводится в обычных, привычных нам значениях: "н. э." или "до н. э.".

Все эти детали давно известны специалистам; соотношение изотопов откалибровано по всей исторической шкале времени с использованием уверенно датированных образцов, в том числе и исторических памятников. Принципиальных проблем радиоуглеродный метод не имеет.

Именно этим методом можно наиболее точно установить возраст льняной Туринской плащаницы, как это делают историки и археологи в отношении всех подобных памятников животного и растительного происхождения. В 1970-е и 80-е годы ученые часто требовали у владельцев плащаницы разрешения на проведение точной ее датировки. Однако им отказывали под тем предлогом, что для проведения исследования нужно было использовать большое количество ткани покрывала. Действительно, в те годы измерение изотопа 14С проводили традиционным методом, определяя радиоактивность образца с помощью счетчика распадов. Но поскольку активность очень невелика, использовались относительно большие массы образцов — в случае текстиля необходимо иметь 20–50 граммов на измерение, причем образцы должны быть полностью измельчены. Но позже был разработан метод масс-спект-рометрии, в котором отдельные атомы ускоряются и разделяются электрическим и магнитным полями; при этом становится возможным прямо измерять соотношение числа этих атомов. При таком методе достаточно иметь очень маленький образец, чтобы осуществить его датировку. В случае с Туринской плащаницей достаточно иметь полоску 7 х 10 см, чтобы провести 12 измерений. Это обстоятельство и облегчило католической церкви в 1988 г. принятие решения об определении возраста (Sarma 1989).

Перейти на страницу:

Комиссия по борьбе с фальсификацией научных исследований РАН читать все книги автора по порядку

Комиссия по борьбе с фальсификацией научных исследований РАН - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


В защиту науки (Бюллетень 1) отзывы

Отзывы читателей о книге В защиту науки (Бюллетень 1), автор: Комиссия по борьбе с фальсификацией научных исследований РАН. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*