Валерий Августинович - Битва за скорость. Великая война авиамоторов
В эксплуатацию было принято три типа самолетов: истребитель Ме-262 А-1а Schwalbe («Ласточка»), бомбардировщик Ме-262 А-2а Sturmvogel («Буревестник») и разведчик и бомбардировщик «Арадо-234В». К сентябрю 1944 г. первое многоцелевое реактивно-истребительное подразделение Erprobungkommando 262 завершило этап войсковых испытаний Ме-262, и было создано спец-подразделение для проведения боевых испытаний Арадо-234 Sonderkommando Gotz. Первым чисто боевым подразделением Люфтваффе, вооруженным реактивными истребителями, стала, как известно, «Команда Новотны». Эта «команда» в составе 12 истребителей вступила в войну 3 октября 1944 г. Однако первые воздушные бои оказались малоудачными — много самолетов было потеряно в авариях, а некоторые были сбиты при сбросе скорости во время подготовки к атаке. Нужно было менять тактику — вместо маневренного боя с применением пушек использовать ракетное вооружение, применяемое с дальней дистанции на большой скорости. Для этого была сформирована специальная группа JG7. Кроме того, занялись и обучением пилотов на двухместных Ме-262, для чего были созданы учебно-тренировочные центры. Также в сентябре 1944 г. были сформированы и первые бомбардировочные подразделения Ме-262 А-2а: «Команда Шенка» и «Команда Эдельвейс». «Арадо-234» эффективно использовался в качестве разведчика, беспрепятственно летая над Британскими островами и Северной Италией. Во время Арденнского наступления немцев в декабре 1944 г. несколько «Арадо-234» из состава эскадры KG 76 впервые отбомбились по союзникам. Ме-262, будучи неуязвимым, оказался идеальным ближним разведчиком. Всего было построено 1433 Ме-262, из которых около 200 поступило в боевые части.
Между тем работы по модификациям 109–004 шли непрерывно: вслед за первой серией «А» появились «В», «С», «D», «Е», «F», «G», «Н». Особенно интересными модификациями были «Е» и «Н». Первая модификация была с форсажной камерой за турбиной. А вторая — по сути, новый двигатель с 11 — ступенчатым компрессором (степень сжатия 5) и двухступенчатой турбиной — тягой 1800 кг, т. е. в два раза большей, чем у прототипа.
Последней попыткой немцев переломить ход воздушной войны на Западе, где бомбардировки союзников нанесли катастрофический урон военной промышленности Германии, было создание массового, так называемого «народного» истребителя Хейнкеля «Саламандра», серийно производившегося с 1945 г. Особенностью этого самолета была компоновка двигателя «БМВ» 109–003 на самолете: он располагался на «спине» фюзеляжа подобно пульсирующему двигателю на крылатой ракете Фау-1.
Ниже представлена таблица разработок (это только по госконтрактам, не включая инициативные разработки фирм) воздушно-реактивных двигателей в Германии менее чем за 10 лет. Такое обилие самых различных вариантов схем двигателей, размерностей и областей их применения возможно только на первой стадии новой инновационной волны. Сегодня, когда инновационная волна авиационных газотурбинных двигателей прошла, появление нового двигателя является довольно редким, по сути, единичным явлением, воплощающим в себе все мировые технологические достижения.
Особо необходимо отметить инновационные работы германских ученых и инженеров в области прямоточных воздушно-реактивных двигателей, или двигателей Лорана — по имени французского изобретателя. Прямоточный двигатель заманчив своей простотой конструкции — в нем нет роторов, сложных трансмиссий, лопаток с их проблемами. Но этот двигатель имеет и существенный родовой недостаток: для его функционирования как теплового двигателя, т. е. преобразователя тепла в работу расширения рабочего тела и соответственно в движение, необходима начальная скорость. Преобразование скорости в давление (т. е. торможение набегающего потока воздуха) во входном устройстве «прямоточки» с последующим подводом тепла в камере сгорания и расширением газов в сопле позволяет организовать термодинамический цикл и, получив в нем работу, преобразовать ее в тяговую мощность. При этом чем выше скорость, тем эффективнее работает «прямоточка». При числе Маха полета выше 3,5 (область «гиперзвука») степень повышения давления набегающего потока во входном устройстве «прямоточки» настолько превосходит степень повышения давления в компрессоре обычного турбореактивного двигателя, что компрессор становится излишним. Именно поэтому область применения реактивных газотурбинных двигателей ограничена этим предельным числом Маха.
Выше (от М=3,5 до М=6) находится наиболее эффективная область работы прямоточного двигателя. Максимальное число Маха, равное 6, ограничено, в свою очередь, теплотворной способностью топлива (самой энергетической пары водород+воздух): ведь эффективность термодинамического цикла определяется отношением максимальной и минимальной температур в цикле. Поскольку максимальная температура ограничена теплотворной способностью топлива, а температура на входе в камеру сгорания повышается с ростом степени повышения давления, то при числе М6 воздушно-реактивный двигатель вырождается.
Неслучайно поэтому, что еще в 1937 г. прямоточными двигателями в Германии заинтересовались прежде всего Сухопутные силы. Возникла идея (Вольф Троммсдорф) разработки инновационного, так называемого активно-реактивного снаряда большой дальности: из артиллерийского ствола выстреливается снаряд, оснащенный «прямоточкой», после достижения определенной скорости включается подача топлива в прямоточную камеру сгорания, и снаряд летит дальше уже с помощью реактивной силы насколько хватит запаса топлива. Ввиду ограниченности массы снаряда, несущего в том числе и заряд взрывчатого вещества, воздушно-реактивный двигатель, использующий в качестве рабочего тела окружающий воздух, обеспечивает лучшие массовые характеристики снаряда по сравнению с ракетным. К 1938 г. идея Троммсдорфа оформилась в теорию применения снаряда. Ему же была поручена разработка такого снаряда.
Принципиальное различие процессов расширения и сжатия движущегося сверхзвукового потока воздуха заключается в том, что в случае геометрического воздействия на поток (изменением проходного сечения) при расширении (увеличении скорости) волны разрежения расходятся веером, не пересекаясь, а при сжатии (уменьшении скорости) волны сжатия пересекаются, образуя сильные ударные волны. Главной проблемой эффективного преобразования скорости набегающего сверхзвукового потока в давление становится уменьшение интенсивности ударных волн. Если произвести торможение потока в одной ударной волне, то потери давления сведут на нет все преимущества. Таким образом, проектирование оптимального сверхзвукового диффузора становится главной задачей при создании прямоточного реактивного двигателя.
(adsbygoogle = window.adsbygoogle || []).push({});