Александр Прищепенко - Шелест гранаты
О подозрительной лодке стражам черноморских рубежей сигнализировали рыбаки. Не исключено, что тот, кому было поручено выяснение всех обстоятельств наглой выходки, взял в руки трофейную гитару. Начал он, конечно, задушевно, слегка изменив, согласно обстоятельствам, оригинальный текст:
«Ты же помнишь июль, золотую погоду…Тот батумский бульвар, ресторан над водой…
А вот в продолжении жестко, пронзительно — и это правильно — зазвучала гражданская тема:
Для кого бы ты пел? Для чужого народа?Для презренных людей — продал край свой родной?»
Опустошенный нравственно беглец во всем признался, сдал всех, от кого получал книги Солженицына и «стал христианином». Судя по публикациям, последнее, правда, «накатило» уже в конце 1991 г. Тогда же Голович был освобожден еще до окончания отмеренного судом срока: попытка побега из СССР уже не считалась изменой, а о шпионаже, как и следовало ожидать, и речи не было. Он давал интервью, страстно, но не особенно изобретательно понося то, что когда-то старался вдолбить в головы других. Вероятно, «ветры перемен» существенно развернули указатель цели, к которой стремился молодой ученый…
…По первой заявке патентной экспертизой сразу, без переписки было принято положительное решение и выдано авторское свидетельство на изобретение (№ 510077). Эта форма правовой защиты была в СССР аналогична патенту, но все права принадлежали государству, а автору выдавалось вознаграждение, как правило, небольшое — 50 рублей (около $ 100 по опять же, государственному курсу). За первой заявкой последовали и другие: в последующие годы удалось довести число авторских свидетельств до сотни.
2.8. Метод аналогий: электролитическая ванна и «взрыв», сделанный из людей
Несмотря на многообещающее начало, нейтронографии не суждено было стать направлением исследований, пользующимся благорасположением руководства НИИАА. Такая позиция была вполне прагматичной: выход нейтронов от генераторов был недостаточен для этих целей, а делиться результатами с организациями, обладающими более мощными источниками — не сулило особых выгод. Поэтому мне была предложена новая тема исследований — изучение распределения электрического поля в генераторах.
С точки зрения электропрочности, нейтронные генераторы — напряженные конструкции. Применение их в оружии требовало минимизации габаритов, но опасность пробоя ускоряющими напряжениями свыше 100 кВ стояла на этом пути. Распределение электрического поля описывает уравнение Пуассона и сейчас произвести расчет можно при помощи даже не слишком мощного персонального компьютера. Однако в те годы в НИИАА был всего один компьютер, а часы работы на нем — дефицитны. Но то же уравнение описывает и распределение электрического тока в электролите и это давало возможность, построив по определенным правилам модель генератора, выяснить распределение поля по распределению плотности тока в аналоге.
Такая модель выполнялась в большом (10:1) — масштабе (рис. 2.16). При изготовлении моделей деталей из диэлектриков, необходимо было обеспечить, во-первых, учет осесимметричности конструкции, а во-вторых — пропорциональность плотности тока в заполнявшем модель электролите диэлектрической проницаемости материала, из которого выполнены настоящие детали. Делалось это так: каждому значению диэлектрической проницаемости ставилось в соответствие пропорциональное значение угла наклона дна соответствующей детали (например, если для вакуума с проницаемостью равной единице этот угол выбирался равным одному градусу, то для тефлона с вдвое большей проницаемостью, он выбирался равным двум градусам. В ванну заливался электролит (вода из-под крана), к металлическим моделям электродов прикладывались потенциалы пропорциональные их потенциалам при работе генератора и щупом снималось распределение токов в воде. Результатом было их распределение, соответствовавшее линиям равных потенциалов электрического поля в генераторе.
2.16. Модель для исследования распределения электрического поля перед погружением в ванну с электролитом (водопроводной водой)Внести что-либо новое ни в процесс измерений, ни в устройство электролитической ванны, мне не удалось, но сущность метода аналогий, похоже, была усвоена. Примерно в это время на глаза попалась диссертация, посвященная строительству. Основная мысль автора состояла в том, что движение больших масс людей подчиняется уравнениям гидродинамики и это позволяет проводить расчеты пропускной способности эскалаторов, проходов и прочего. Но этим же законам подчиняется и движение вещества при взрывах. Таким образом, можно было, собрав несколько тысяч сотрудников, одев их в разноцветные халаты, построить чрезвычайно наглядную гигантскую модель ядерного заряда. Неясно было, правда, как моделировать нейтроны, но была твердая уверенность, что и здесь решение найдется. Действующую двумерную модель, управляемую устройством вроде светофора, можно было продемонстрировать наблюдающему явление с крыши высокому начальству. Конечно, такое дерзкое предложение руководству института могло быть сочтено издевательством, но с друзьями можно было и поделиться. Когда кто- то сказал, что не удастся собрать столько людей, ему ответили: «А в колхоз какую прорву гоняют?» Принудительные поездки инженеров и научных работников для выполнения самой грязной работы в деревне были повсеместной практикой в научных учреждениях СССР.
2.9. Измерения фона: сосчитать каждый нейтрон!
В 1974 году среди задач лаборатории нейтронных генераторов, появилась еще одна — измерения нейтронного фона (немногих нейтронов, а не их гигантских потоков от ядерного взрыва). Чтобы регистрировать фон, применялись газоразрядные счетчики, наполненные газовыми смесями на основе гелия-3, имеющего очень большое (5400 барн) сечение реакции на нейтронах, продукты которой (тритон и протон) обладают хорошей ионизирующей способностью. Счетчик представляет металлический цилиндр, наполненный газовой смесью (почему не чистым газом — станет ясно из главы, в которой речь пойдет об исследованиях ионной кинетики).
По оси проходит тонкая вольфрамовая нить. При подаче напряжения в несколько киловольт создается крайне неоднородное распределение электрического поля: вблизи нити напряженность его очень высока — настолько, что газ в этой области пробивается, но «частично» — по мере удаления от нити и снижения напряженности поля, «лавинообразное» размножение заряженных частиц прекращается. Начинаясь со случайного акта ионизации (например — от космического излучения), разряд затем «поддерживает сам себя»: необходимые для этого заряженные частицы образуются на электродах и в газе при облучении ультрафиолетом, испускаемым при ионизации, «выбиваются» из металла электродов при столкновениях разогнанных полем носителей заряда. Такой разряд сопровождается свечением («короной») и змеиным шипением. Ток развитого[36] (протекающего при достаточно высоком потенциале коронирующего электрода) разряда практически постоянен (с незначительными флуктуациями) и составляет микроамперы.
(adsbygoogle = window.adsbygoogle || []).push({});