Владимир Левшин - Черная маска из Аль-Джебры
Я чуть не заплакал с досады. Но автомат (и как он только все замечает?) заворчал, что на первый раз хватит и этого и что, пока мы не будем знать каждую букву в лицо и по имени, лучше нам к нему не обращаться.
— Почтенный автомат, — сказал Олег, — мы готовы выучить все, что угодно, но объясните, пожалуйста, что это за буквы?
— Так бы и спрашивали, — подобрел тот, — от этого я никогда не отказываюсь. На первой картонке вы видите основных жителей Аль-Джебры — двадцать шесть букв латинского алфавита. Этот алфавит употребляется во многих странах. Ведь он был принят еще в Древнем Риме, и многие народы пользуются им до наших дней. Поэтому тем из вас, кто изучает какой-нибудь иностранный язык — английский, немецкий, французский, — эти буквы уже знакомы. Зато вряд ли вы знаете буквы, изображенные на другой картонке.
Это двадцать четыре представителя греческого алфавита. В Аль-Джебре они встречаются не так уж часто, но знакомство с ними вам еще пригодится.
Ну, мы рассмотрели и те и эти фотографии. Латинские буквы ничего себе, а греческие мне не особенно понравились. По-моему, они ужасные кривляки. Взять хотя бы Кси: прямо змея!
А потом за нами пришла мама Двойка. Мы простились с автоматом и вернулись на монорельсовую дорогу, чтобы раз и навсегда разделаться с этими трудными правилами воздушного движения.
Напоследок я успел опустить в щель еще один жетон и снова получил две картонки с фотографиями. Посылаю их тебе: пригодятся для следующих уроков.
А пока — кси-пси! Привет.
Сева.
Нулики подрались
(Нулик — отряду РВТ)
Здравствуйте, ребята! Не знаю, может, вы и правы, что отрицательных пирожных не бывает, зато отрицательные Нулики встречаются. Сегодня утром один такой отрицательный Нулик напал на другого, который до сих пор считался очень положительным. Ну и драка была! Еще немного — и они бы взаимоуничтожились. Я уж думал, не рассадить ли их по разным загонам — ну, как эти самые… абсолютные значения. Но тут их растащили другие Нулики. Из этого я сделал вывод, что положительный Нулик только прикидывался положительным. На деле он самый что ни на есть отрицательный! И я им обоим поставил по поведению жирный минус.
В нашей школе занятия продолжаются.
Греческие буквы трудные. Мы их пока отложили. Зато латинский алфавит всем понравился. Только как туда попали русские буквы? И почему некоторые из них называются по-другому: Р — Пэ, В — Бэ? А вот «О» молодчина! И там и тут пишется одинаково. Это потому, что оно похоже на меня.
Если снова побываете у автомата, непременно спросите: куда ведет воздушная монорельсовая дорога? Не к тем ли Великанам, которых вызывают, когда мы безобразничаем? И где эти Великаны живут? Справа или слева от Нулевой станции?
Нулик-Профессор.
В тесноте, да не в обиде
(Таня — Нулику)
Бедный, бедный Нулик! Ну и каша у тебя в голове! Сначала изобрел какие-то отрицательные пирожные, потом — положительных и отрицательных Нуликов!
Запомни раз и навсегда: нуль — единственное число, которое не бывает ни положительным, ни отрицательным. Это что-то вроде пограничника, который стоит на рубеже между положительными и отрицательными числами.
Конечно, в твоей школе тоже есть положительные и отрицательные Нулики. Но это ведь совсем другое дело. Просто одни из них хорошие, а другие — плохие.
Второй твой вопрос — о Великанах — очень интересный. Но ответил на него не автомат, а мама Двойка. Она говорит, что ты любознательный ребенок.
Оба конца монорельсовой дороги и вправду ведут в Бесконечность. А в Бесконечности, понятно, живут числа — Великаны. Бесконечность тоже бывает положительная и отрицательная. Только там свои, особые законы. Положительные и отрицательные Великаны прекрасно уживаются. Но как это им удается, мы не узнали. Это как раз один из тех вопросов, на которые мама Двойка отвечает: «Всякому овощу свое время».
А теперь танцуй! Мы научились умножать и делить отрицательные числа.
Ты ведь знаешь, что умножение можно рассматривать как сложение. Умножить два на три — все равно что сложить три двойки:
+2 × +3 = +2 + +2 + +2 = +6То же самое происходит, когда отрицательное число умножают на положительное. Разве умножить минус два на плюс три — это не то же самое, что сложить три отрицательные двойки? А так как при сложении отрицательных чисел вагончики двигаются влево от Нулевой станции, то и произведение будет отрицательное — минус шесть:
–2 × +3 = –2 + –2 + –2 = –6— Ну, а если умножить минус три на плюс два? — спросил Сева. — Тогда что?
— Какая же разница? — сказала мама Двойка. — Как было минус шесть, так и останется минус шесть. Вот смотрите:
–3 × +2 = –3 + –3 = –6— Ясно! — кивнул Сева. — Пусть себе множители меняются знаками сколько хотят, произведение все равно остается то же. Оно всегда будет отрицательным, если мы перемножаем два числа с разными знаками. — Сева важно посмотрел на всех. Он был страшно собой доволен. — Все поняли? Тогда поехали дальше. Выясним теперь, что получится, если оба множителя отрицательные?
— Ну что ж, выясняйте, — сказала мама Двойка, — мы с удовольствием вас послушаем.
— Вы меня не поняли, — смутился Сева. — Это я вас собирался послушать.
— Ах вот оно что! Тогда другое дело.
Всем нам стало неловко за Севу. Мы подумали, что мама Двойка обиделась, но она посмотрела на нас смеющимися глазами и продолжала:
— Вы хотели знать, что происходит при перемножении двух отрицательных чисел? Нетрудно догадаться. Чтобы умножить любое число на положительное, надо отложить его на монорельсе в ту же сторону от Нулевой станции, с какой оно находится. Это мы только что видели.
Когда же мы умножаем любое число на отрицательное, все происходит наоборот. Вы ведь знаете, какие упрямцы эти отрицательные числа! Поэтому умножаемое откладывается не с той стороны, где оно находится, а по другую сторону от нуля:
+2 × –4 = –8Теперь нетрудно понять, что получится при умножении отрицательного числа на отрицательное; в этом случае умножаемое надо откладывать вправо от нуля:
–2 × –4 = +8— Вот те раз! — Брови у Севы стали прямо как два вопросительных знака. — Отрицательное число, умноженное на отрицательное, становится положительным?! Чудеса!
— Такие чудеса случаются у нас в Аль-Джебре на каждом шагу, — ответила мама Двойка.
— Ну, если так, расскажите нам поскорее про деление. Там, наверное, будут какие-нибудь новые чудеса?
— Ничуть не бывало. Деление — действие, обратное умножению. Стало быть, и правила знаков не меняются:
–6 : +3 = –2 –6 : –3 = –2Мы почувствовали себя ужасно образованными. А пуще всех — Сева.
— Теперь нам все нипочем! — заявил он. — Мы знаем эту дорогу как свои пять пальцев!
— Ошибаетесь, — сказала мама Двойка, — вы познакомились только с целыми числами.
— А разве здесь есть и другие?
— А как же!
— Вы, наверное, подразумеваете дробные числа, — предположил Олег.
— Не только. Дробные числа — это те, что расположены между целыми числами. — Мама Двойка указала на палочки ограды, которые мы недавно пересчитывали. — Здесь расстояние между двумя целыми числами разделено на десять равных частей. Каждая из них составляет одну десятую единицы. Но ведь этих делений может быть и гораздо больше. Мысленно мы можем разделить это расстояние на любое число частей.
— Значит, вагончик может останавливаться не только у целого числа, но и у любой дроби, то есть между станциями?
— Ну конечно! В любом месте, по первому требованию!
Мы тут же вызвали вагончик и заставили его остановиться сперва против числа 2,5, а потом против 3,44… Этого нам показалось мало. Мы назвали число минус пять и четыре миллионных: —5,000 004, и красный вагончик, миновав Нулевую станцию, превратился в синий и остановился на волосок дальше станции минус 5.
— Выходит, — неуверенно сказал Сева, — вся эта бесконечная дорога сплошь заполнена числами?
— Именно сплошь! — ответила мама Двойка. — Можно сказать, непрерывно. У нас очень большая плотность населения. На всем пути не сыскать ни одной точечки, не заселенной каким-нибудь числом. Есть среди этих чисел и такие, величину которых мы никогда не можем вычислить точно.
— Что ж это за число, которое нельзя вычислить?