Kniga-Online.club
» » » » Инесса Раскина - Логика для всех. От пиратов до мудрецов

Инесса Раскина - Логика для всех. От пиратов до мудрецов

Читать бесплатно Инесса Раскина - Логика для всех. От пиратов до мудрецов. Жанр: Детская образовательная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Там, где стоят знаки вопроса, общего рецепта нет, для каждой задачи приходится искать свое доказательство.

Задача 3.1. Определите, какие из утверждений верны. Где можно, подтвердите свой ответ примером (контрпримером). В остальных случаях обоснуйте его по-другому.

1. Все нечетные числа простые.

2. Все простые числа нечетные.

3. Некоторые нечетные числа простые.

4. Некоторые простые числа нечетные.

5. Все четные числа составные.

6. Все числа вида р + 7, где р – простое, являются составными.

Ответ. Верны утверждения 3, 4, 6.

Решение. Привести контрпримеры к утверждениям 1, 2, 5 и примеры к утверждениям 3, 4 предоставляем читателю. Для доказательства утверждения 6 рассмотрим два случая. Если р = 2, то число р + 7 = 9 – составное. Если простое число p ≠ 2, то оно нечетное, поэтому р + 7 – четное и больше 2, следовательно, составное.

Задача 3.2. Верно ли высказывание: «Любое нечетное число, большее 5, можно представить в виде суммы трех простых чисел»?

Обсуждение. На первый взгляд это утверждение мало отличается от сформулированных в предыдущем задании. Попробуем рассуждать так же. Для начала поищем контрпример (как в пунктах 1, 2 и 5 предыдущей задачи): 7 = 2 + 2 +3, 9 = 3 + 3 +3, 11 = 3 + 3 + 5 и т. д. Не получается? Что ж, попытаемся доказать, что утверждение верно (как в пункте 6). Тоже не получается? Не огорчайтесь, вы не одиноки! Еще в 1742 году Кристиан Гольдбах предложил эту задачу Леонарду Эйлеру. Позже она получила название тернарной проблемы Гольдбаха. Ей занимались многие математики, но лишь в 2013 году американский математик Харальд Хельфготт окончательно доказал, что гипотеза Гольдбаха верна. А бинарная проблема Гольбаха, упоминавшаяся на первом занятии, не решена до сих пор.

Задача 3.3*. Верно ли утверждение: «Все дожившие до наших дней тираннозавры умеют вышивать крестиком»?

Обсуждение. Утверждение звучит странно и на первый взгляд кажется неверным. Что ж, попробуем его опровергнуть. Для этого нужно привести контрпример – то есть дожившего до наших дней тираннозавра, не умеющего вышивать крестиком. Поскольку его не существует, то утверждение верно.

Ответ. Да, верно.

Комментарий 1. Сравним две последние задачи. Поиск контрпримера в обеих оказался затруднительным. Но эти затруднения разного характера. Контрпример к проблеме Гольдбаха мы найти не могли, но не были уверены, что его не сможет найти кто-то более умный или терпеливый. Поэтому вывода сделать не могли (а Харальд Хельфготт смог!). А вот живого тираннозавра не только мы с вами не можем найти, но и уверены, что никто другой не найдет.

Комментарий 2. Аналогично можно верно высказываться не только о живых тираннозаврах, но вообще обо всем, чего на самом деле нет. Например, все кролики, проглотившие удава, остались голодными. (Не верите? Тогда найдите кролика, проглотившего удава, и поинтересуйтесь, сыт ли он.) А все четные числа, оканчивающиеся на 5, оканчиваются на 7. С точки зрения формальной логики любое высказывание обо всех элементах пустого множества верно, потому что к нему не может быть приведен контрпример.

Есть и другая причина считать верными высказывания о современных тираннозаврах и прочих несуществующих объектах. Начнем с несомненно истинного высказывания «Все числа, кратные 12, четны». Дополнив условие, мы получим следствие из него, которое тоже должно быть истинным. Например, «Все трехзначные числа, кратные 12, четны». Или «Всякое число с суммой цифр 30, кратное 12, четно». Или «Всякое число с суммой цифр 100, кратное 12, четно». А теперь заметим, что числа с суммой цифр 100, кратные 12, – такие же несуществующие объекты, как и современные тираннозавры.

Задача 3.4*. Рассмотрим два высказывания:

А: Некоторым Мишиным одноклассникам 12 лет.

Б: Всем Мишиным одноклассникам 12 лет.

Можно ли, ничего не зная про Мишу, утверждать, что:

1) если верно А, то верно и Б;

2) если верно Б, то верно и А?

Обсуждение. Если бы речь шла об одном конкретном Мише, вопрос был бы неинтересен. Например, Миша учится в шестом классе, у него двадцать одноклассников и всем им по 12 лет; тогда оба высказывания, А и Б, истинны. Однако в задаче требуется понять, может ли для какого-нибудь Миши первое высказывание оказаться верным, а второе нет (т. е. возможен ли контрпример).

Решение. 1) Нельзя. Контрпример очевиден: пусть у Миши 5 (или любое другое натуральное число) одноклассников, которым двенадцать лет, и 20 (или любое другое натуральное число) тринадцатилетних одноклассников. Тогда А истинно, а Б ложно.

2) Как ни странно, тоже нельзя! Для построения контрпримера предположим, что Мише три года, и никаких одноклассников у него вообще нет. Верно ли утверждение Б? Верно! Кто не согласен, пусть предъявит контрпример – Мишиного одноклассника другого возраста. А утверждение А, означающее, что существует хотя бы один Мишин двенадцатилетний одноклассник, неверно.

Задачи для самостоятельного решения

Задача 3.5. Землянин Вася сказал: «Все марсиане лжецы». Прав ли Вася?

Задача 3.6. Есть 30 гирек, которые весят 1 г, 2 г, 3 г, …, 30 г. Можно ли разложить их: 1) на две кучки одинакового веса; 2) на три кучки одинакового веса?

Задача 3.7. 1) Можно ли заполнить таблицу 3x3 натуральными числами так, чтобы сумма чисел в каждой строке была четным числом, а в каждом столбце – нечетным? 2) А таблицу 4x4?

Задача 3.8. Верно ли, что периметр любого четырехугольника, целиком находящегося внутри данного квадрата, меньше периметра этого квадрата?

Задача 3.9. Верно ли, что все числа вида 2n + 15, где n – натуральное число, простые?

Задача 3.10. Рассмотрим натуральные числа, в записи которых нет нулей.

1) Найдется ли среди них десятизначное число, делящееся на сумму своих цифр?

2) А стозначное?

Задача 3.11. 1) Какие из высказываний А – Д означают одно и то же?

2) Будем считать высказывание А истинным. Какие из других высказываний в таком случае наверняка истинны?

А: Дед Мороз – волшебник.

Б: Существует хотя бы один дед-волшебник.

В: Существует ровно один дед-волшебник.

Г: Некоторые деды – волшебники.

Д: Некоторые волшебники – деды.

Задача 3.12*. Найдите ошибку в рассуждениях.

«Рассмотрим три высказывания:

А: Существует хотя бы один дед-волшебник.

Б: Дед Мороз – волшебник.

В: Все деды – волшебники.

Можно ли утверждать, что если верно В, то верно и А? Нет: контрпримером является ситуация, когда множество дедов пусто (аналогично задаче про Мишиных одноклассников).

С другой стороны, если верно В, то верно и Б (иначе Дед Мороз служил бы контрпримером к высказыванию В). Но если верно Б, то верно и А (для доказательства существования достаточно привести пример, в данном случае Дед Мороз – пример). Итак, если верно В, то верно и А».

Задача 3.13 Прокомментируйте доказательство существования Деда Мороза, изложенное в виде диалога двух логиков.

Первый: «Если я не ошибаюсь, Дед Мороз существует».

Второй: «Разумеется, Дед Мороз существует, если вы не ошибаетесь».

Первый: «Следовательно, мое утверждение истинно». Второй: «Разумеется!»

Первый: «Итак, я не ошибся, а вы согласились с тем что если я не ошибаюсь, то Дед Мороз существует. Следовательно, Дед Мороз существует».

Занятие 4

Пиратская логика, или Высказывания с союзами «и», «или»

Пираты!Ни пуха, ни пера!

Юлий Ким

На этом занятии кружковцы научатся строить отрицания к высказываниям с союзами «и» и «или». На нем продолжается работа с понятием отрицания и законом исключенного третьего, а также с кругами Эйлера в качестве иллюстраций. Появляются таблицы истинности, которые пригодятся на пятом занятии. Однако при желании его можно с минимальными изменениями провести и независимо от других занятий книжки, поскольку уровень сложности рассчитан на начинающих.

Но вот парадокс: дети сравнительно легко справляются с предложенными задачами. Если кто-то ошибся, он быстро исправляется. Но через некоторое время многие ошибутся в аналогичном месте. Почему?

Как указано в предисловии, основные трудности учащиеся испытывают там, где формальный смысл высказывания отличается от разговорной практики. Одно из таких отличий связано с тем, что если два простых предложения объединить союзом «и» в сложносочиненное, смысл сказанного на бытовом уровне не изменится. Какая, казалось бы, разница, как сказать: «Беня врун. И Веня врун» или «Беня и Веня оба вруны»? Если это говорит правдивый человек, действительно, никакой. А вот если лгун – разница есть (см. задачу 4.8). Другое отличие связано с разделительным и неразделительным пониманием союза «или» и описано в замечаниях между задачами 4.2 и 4.3 и в задаче 4.4. Чтобы такого рода трудности преодолеть, недостаточно сообщить таблицу истинности и решить одну задачу. Для большинства учащихся и одного занятия будет недостаточно. Рекомендуем руководителю кружка часть предложенных здесь задач оставить «на потом». Для закрепления можно брать дополнительные задачи, а можно и придумывать в необходимом количестве задачи, аналогичные задачам 4.2, 4.3, 4.6.

Перейти на страницу:

Инесса Раскина читать все книги автора по порядку

Инесса Раскина - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Логика для всех. От пиратов до мудрецов отзывы

Отзывы читателей о книге Логика для всех. От пиратов до мудрецов, автор: Инесса Раскина. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*