Людвик Соучек - Там, где не слышно голоса
Ведь все волны, известные физикам, распространяются в пространстве прямолинейно.
Давайте вернемся на столетие назад, в те времена, когда впервые возник этот вопрос.
Случилось это восемнадцатого июля 1815 года. На болотистой равнине неподалеку от Ватерлоо встретились две армии: Наполеона и Веллингтона. Солдаты были измучены походом и недавними сражениями. Силы обеих армий были примерно равны. И вот император Наполеон приказал перейти в наступление. Французские кирасиры вступили в бой с шотландской кавалерией. Артиллеристы засыпали сомкнутые колонны неприятельских войск градом картечи.
Над полем боя гремели выстрелы. И хотя французские дивизии редели, солдаты истекали кровью, Наполеон был совершенно спокоен. Ведь неподалеку стояла тридцатитысячная армия маршала Груши. Конечно же, он слышит орудийные залпы и, наверное, уже спешит на помощь.
Сейчас его дивизии сметут остатки английской армии. Но император не дождался своего маршала. Вместо Груши на поле боя появился неприятель — генерал Блюхер с остатками своей армии. Еще вчера Блюхер был разбит Наполеоном, а теперь он помог англичанам в решающую минуту. Наполеон потерпел полное поражение, вынужден был подписать отречение от престола и отправиться в изгнание. Исход битвы под Ватерлоо решил судьбы Европы. До конца своих дней и Наполеон и его сторонники обвиняли Груши в измене. А Груши до самой смерти доказывал свою невинность. Маршал утверждал, что ни он, ни его офицеры не слышали залпов. Все только посмеялись над ним. Блюхер, находившийся гораздо дальше, услышал их и подоспел на помощь. А Груши, видимо, оглох. Весь мир спрашивал: «Сколько вам заплатили англичане за вашу глухоту, маршал?»
В поражении Наполеона под Ватерлоо были виноваты и звуковые волны, которые позволяют себе всякие «выходки».
Но маршал Груши не был предателем. Наполеон потерпел поражение под Ватерлоо из-за закона распространения звуковых волн. Только в то время этого никто не мог предположить. Ученые-физики вплотную подошли к этим проблемам только по окончании 1-й мировой войны. Ведь тогда представились неограниченные возможности для изучения слышимости артиллерийской стрельбы.
Иногда происходили странные вещи. Так, например, когда в октябре 1914 года немецкая артиллерия обстреливала Антверпен, за 200 километров от города от орудийных залпов дребезжали окна. А на расстоянии 50 километров от немецких батарей ничего не было слышно…
Я уже не буду больше разжигать ваше любопытство: физики установили, что высоко над землей на расстоянии 40–80 километров, в стратосфере звуковые волны отражаются и отправляются обратно на поверхность земли. Таким образом, звук переносится на расстоянии до 300 километров от своего источника.
Между источником звука и полосой слышимости, возникающей благодаря отражению радиоволн в стратосфере, может быть и «полоса тишины», такая большая, что в ней спокойно разместится целая армия с маршалом во главе…
Вскоре после того, как через Атлантический океан впервые были переданы радиосигналы, физики установили, что в стратосфере существует какое-то подобие зеркала, отражающего радиоволны обратно на Землю. (Это связано с повышением температуры молекул в разряженных слоях атмосферы). Иначе было трудно объяснить, почему радиоволны не ведут себя так, как должны были бы вести согласно утверждениям профессора Томсона. Почему они не уходят с поверхности земного шара в космос? Почему происходит хорошо знакомое вам замирание или прекращение радиоприема на коротких волнах? Специалисты называют это явление «федингом».
В начале XIX века английский физик Дальтон, объясняя полярное сияние, впервые предположил, что существуют электризованные слои воздуха. К такому же выводу пришел и английский физик Шустер в 1896 году. Но только двое ученых Кеннели и Хэвисайд на фактическом материале подтвердили правдивость этой гипотезы. Когда в 1925 году на высоте 100 километров был действительно обнаружен слой, отражающий радиоволны, в честь обоих исследователей он был назван «слой Кеннели-Хэвисайда».
Через несколько лет физик Эпплтон обнаружил над слоем Кеннели-Хэвисайда на высоте 300 километров еще один слой, отражающий даже те короткие волны, которые проходили сквозь первое «зеркало». Оба слоя были позднее названы ионосферой. Маркони и не подозревал, что на огромной высоте, куда не залетают ни птицы, ни воздушные шары, есть слои разряженного воздуха, настолько разряженного, что они напоминают безвоздушное пространство. Молекулы газов в этих слоях превратились в ионы, т. е. в заряженные электричеством частицы, они-то и отражают радиоволны обратно на Землю. Эти слои и помогли Маркони осуществить его замыслы. Но ионосфера иногда может «подвести». Ведь она может послать на антенну вашего радиоприемника несколько отражений одновременно. Они сойдутся в противоположной амплитуде, волна затухнет, ослабнет и радиосигнал, и вы начинаете сердиться: «Что с этим радио стряслось? Опять ничего не слышно!»
Фединг!
Ругайтесь, но только погромче! Ведь «виновник» этого явления удален от вас самое меньшее на сто километров!
«Говорящие» зеркала
Вы, наверное, обращали на них внимание. Они растут в последнее время, как грибы после дождя: «зеркала» с искривленной, параболической поверхностью, расположенные на высоких холмах, на железобетонных башнях, похожих на видовые вышки или маяки. Вы уже поняли, конечно, о чем идет речь! В этом вопросе с самого начала нужна ясность. Дело в том, что если бы вы задали вопрос, для чего служат упомянутые тарельчатые зеркала пяти техникам, то, возможно, получили бы от них пять разных ответов:
— Зеркала? Да ведь это аппараты направленной связи! — сказал бы один.
— Параболоиды ультракоротковолновой связи! — заявил бы второй, — любитель длинных и сложных иностранных выражений.
— Связь Герца, — объяснил бы деловито третий.
Четвертый сказал бы, что это аппараты ретрансляционной связи.
Пятый, не согласившись ни с одним из предшественников, стал бы утверждать, что это средства радиорелейной связи.
Развитие пошло по направлению создания антенн направленной связи, возвышающихся в настоящее время на вершинах холмов почти во всех странах мира.
Во всех случаях имелось бы в виду одно и то же устройство. Откуда же такое необычное для науки и техники разнообразие названий? Все имеет свои принципы. Бурная история радиорелейной связи — будем ее впредь называть именно так — столь коротка, что до унификации названий просто «не дошли руки». Началась это история с не совсем удачного эпизода, происшедшего в 1931 году в Ла-Манше, как раз в тех местах, где когда-то поднимался в воздух и приземлялся прославленный летчик Блерио, а почти на 150 лет раньше совершил свои полеты на воздушном шаре искатель приключений Бланшар. В 1931 году состоялись первые опыты по установлению связи между английским городом Дувром и Кале, расположенном на французском берегу, при помощи чрезвычайно коротких волн, длиною всего в 18 сантиметров (до этого для связи использовались волны, измерявшиеся метрами, десятками и даже сотнями метров!).
Опыты были вскоре приостановлены. Прием отличался низким качеством, слышимость была плохой, ее ухудшали многочисленные помехи. А ведь оба города находились достаточно близко. Но тем не менее опыты эти привлекли внимание военных специалистов. Они рассуждали вполне логично: главным оружием в войне, которая нависла над Европой, будут самолеты. Англии, уверенной прежде в своей полной безопасности, несмотря на ее островное положение, несмотря на наличие мощного военного флота, охранявшего берега, угрожала опасность с воздуха, — оттуда мог каждую минуту посыпаться град бомб. Ведь нечто подобное жителям Лондона довелось уже испытать в первую мировую войну, когда над городом появились сигарообразные тела огромных немецких «цеппелинов».
Прежде всего нужно было вовремя узнать о приближении вражеских самолетов. Слово «вовремя» означало в данном случае «время, необходимое для того, чтобы истребители английской авиации могли подняться со своих аэродромов навстречу врагу, а артиллеристы зенитных батарей подготовиться к отражению воздушной атаки».
Морякам было в этом отношении проще. Они довольно быстро разработали способ обнаружения приближающихся неприятельских подводных лодок. Были созданы звукоулавливатели, регистрировавшие шум винтов подводной лодки, и эхолоты, замечавшие даже звук, отраженный от корпуса подводной лодки, притаившейся под водой с выключенными моторами. А там, где откажут звуковые приборы, поможет АСДИК, — прибор, использующий неслышимые простым ухом ультразвуки высокой частоты, которые проникают на гораздо большую глубину и на большее расстояние, чем обычные звуки.