Загадки и диковинки в мире чисел - Яков Исидорович Перельман
Вот почему «единичную» систему едва ли можно назвать «системой», по крайней мере, ее нельзя поставить рядом с остальными, так как она принципиально от них отличается, не давая никакой экономии в изображении чисел. Если же ее откинуть, то простейшей системой счисления нужно признать систему двоичную, в которой употребляются всего две цифры: 1 и 0. При помощи 1 и 0 можно изобразить все бесконечное множество чисел! На практике эта система мало удобна – получаются слишком длинные числа[18]; но теоретически она имеет все права считаться простейшей. Она обладает некоторыми любопытными особенностями, присущими только ей одной, особенностями этими, между прочим, можно воспользоваться для выполнения целого ряда эффектных математических фокусов, о которых мы скоро побеседуем подробно в главе «Фокусы без обмана».
Необычайная арифметика
Простые арифметические действия, к которым мы привыкли настолько, что выполняем их автоматически, потребуют от нас немалого напряжения, если мы пожелаем применить их к числам, написанным не по десятичной системе. Попробуйте, например, выполнить сложение следующих двух чисел, написанных по пятиричной системе:
Складываем по разрядам, начиная с единиц, т. е. справа: 3 + 2 равно пяти, но мы не можем записать 5, потому что такой цифры в пятиричной системе не существует: пять есть уже единица высшего разряда. Значит, в сумме вовсе нет единиц: пишем 0, а пять, т. е. единицу следующего разряда, удерживаем в уме. Далее, 0 + 3 = 3, да еще единица, удержанная в уме, – всего
4 единицы второго разряда. В третьем разряде получаем 2 + 1 = 3. В четвертом 4 + 2 равно шести, т. е. 5+1; пишем 1, а 5, т. е. единицу высшего разряда, относим далее влево. Искомая сумма = 11340.
Предоставляем читателю проверить это сложение, предварительно переведя изображенные в кавычках числа в десятичную систему и выполнив то же действие.
Точно так же выполняются и другие действия: для упражнения приводим далее ряд примеров, число которых читатель, при желании, может увеличить самостоятельно:
При выполнении этих действий мы сначала мысленно изображаем написанные числа в привычной нам десятичной системе, а получив результат, снова изображаем его в требуемой недесятичной системе. Но можно поступать и иначе: составить «таблицу сложения» и «таблицу умножения» в тех же системах, в которых даны нам числа, и пользоваться ими непосредственно. Например, таблица сложения в пятиричной системе такова:
С помощью этой таблички мы могли бы сложить числа «4203» и «2132», написанные в пятиричной системе, гораздо менее напрягая внимание, чем при способе, примененном раньше.
Упрощается, как легко понять, также выполнение вычитания.
Нетрудно составить и таблицу умножения («Пифагорову») для пятиричной системы:
Имея эту табличку перед глазами, вы опять-таки можете облегчить себе труд умножения (и деления) чисел в пятиричной системе, как легко убедиться, применив ее к приведенным выше примерам. Например, при умножении
рассуждаем так: трижды три «14» (из таблицы); 4 пишем, 1 – в уме. Один на 3 = 3, да еще один, – пишем 4. Дважды три = «11»; 1 – пишем, 1 – переносим влево. Получаем в результате «1144».
Чем меньше основание системы, тем меньше и соответствующие таблицы сложения и умножения. Например, для троичной системы обе таблицы таковы:
Их можно было бы сразу же запомнить и пользоваться ими для выполнения действий. Самые маленькие таблицы сложения и вычитания получаются для двоичной системы:
При помощи таких-то простых «таблиц» можно выполнять в двоичной системе все четыре действия! Умножения в этой системе, в сущности, как бы вовсе нет: ведь умножить на единицу значит оставить число без изменения, а умножение на «10», «100», «1000» и т. п. сводится к простому приписыванию справа соответствующего числа нулей. Что же касается сложения, то для выполнения его нужно помнить только одно – что в двоичной системе 1 + 1 = 10. Не правда ли, мы с полным основанием назвали раньше двоичную систему самой простой из всех возможных? Длина чисел этой своеобразной арифметики искупается простотой выполнения над ними всех арифметических действий. Пусть, например, требуется умножить:
Выполнение действия сводится только к переписыванию данных чисел в надлежащем расположении: это требует несравненно меньше умственных усилий, чем умножение тех же чисел в десятичной системе (605 × 37 = 22385). Если бы у нас была принята двоичная система, изучение письменного счисления требовало бы наименьшего умственного напряжения (зато – больше бумаги и чернил). Но в устном счете двоичная арифметика по удобству выполнения действий значительно уступает нашей десятичной.
Чет или нечет?
Не видя числа, трудно, конечно, угадать, какое оно – четное или нечетное. Но не думайте, что вы всегда сможете сказать это, едва увидите задаваемое число. Скажите, например: четное или нечетное число 16?
Если вам известно,